Yan Xiaokang, Williams Michael R, Barboza Castillo Ameriks D, Kireev Dmitri, Hathaway Nathaniel A
Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599, USA.
Department of Chemistry, University of Missouri-Columbia, Columbia, MO 65211, USA.
PNAS Nexus. 2023 Mar 7;2(4):pgad062. doi: 10.1093/pnasnexus/pgad062. eCollection 2023 Apr.
Gene regulation plays essential roles in all multicellular organisms, allowing for different specialized tissue types to be generated from a complex genome. Heterochromatin-driven gene repression, associated with a physical compaction of the genome, is a pathway involving core components that are conserved from yeast to human. Posttranslational modification of chromatin is a critical component of gene regulation. Specifically, tri-methylation of the nucleosome component histone 3 at lysine 9 (H3K9me3) is a key feature of this pathway along with the hallmark heterochromatin protein 1 (HP1). Histone methyltransferases are recruited by HP1 to deposit H3K9me3 marks which nucleate and recruit more HP1 in a process that spreads from the targeting site to signal for gene repression. One of the enzymes recruited is SETDB1, a methyltransferase which putatively catalyzes posttranslational methylation marks on H3K9. To better understand the contribution of SETDB1 in heterochromatin formation, we downregulated SETDB1 through knockdown by a dCas9-KRAB system and examined heterochromatin formation in a chromatin in vivo assay (CiA-Oct4). We studied the contribution of SETDB1 to heterochromatin formation kinetics in a developmentally crucial locus, . Our data demonstrate that SETDB1 reduction led to a delay in both gene silencing and in H3K9me3 accumulation. Importantly, SETDB1 knockdown to a ∼50% level did not stop heterochromatin formation completely. Particle-based Monte Carlo simulations in 3D space with explicit representation of key molecular processes enabled the elucidation of how SETDB1 downregulation affects the individual molecular processes underlying heterochromatin formation.
基因调控在所有多细胞生物中都起着至关重要的作用,使得从复杂的基因组中能够产生不同的特化组织类型。异染色质驱动的基因抑制与基因组的物理压缩相关,是一条涉及从酵母到人类都保守的核心成分的途径。染色质的翻译后修饰是基因调控的关键组成部分。具体而言,核小体成分组蛋白3赖氨酸9位点的三甲基化(H3K9me3)是该途径的一个关键特征,同时还有标志性的异染色质蛋白1(HP1)。HP1招募组蛋白甲基转移酶来沉积H3K9me3标记,这些标记形成核心并招募更多的HP1,这个过程从靶向位点开始扩散,以发出基因抑制信号。所招募的一种酶是SETDB1,一种甲基转移酶,据推测它催化H3K9上的翻译后甲基化标记。为了更好地理解SETDB1在异染色质形成中的作用,我们通过dCas9-KRAB系统的敲低来下调SETDB1,并在体内染色质分析(CiA-Oct4)中检测异染色质的形成。我们研究了SETDB1对一个在发育中至关重要的基因座的异染色质形成动力学的贡献。我们的数据表明,SETDB1的减少导致基因沉默和H3K9me3积累的延迟。重要的是,将SETDB1敲低至约50%的水平并没有完全阻止异染色质的形成。在三维空间中基于粒子的蒙特卡罗模拟,明确表示关键分子过程,能够阐明SETDB1下调如何影响异染色质形成背后的各个分子过程。