National Laboratory of Protein Engineering and Plant Genetic Engineering, College of Life Sciences, Peking University, Beijing 100871, China.
Proc Natl Acad Sci U S A. 2009 Dec 15;106(50):21431-6. doi: 10.1073/pnas.0907670106. Epub 2009 Nov 30.
The ability to switch from skotomorphogenesis to photomorphogenesis is essential for seedling development and plant survival. Recent studies revealed that COP1 and phytochrome-interacting factors (PIFs) are key regulators of this transition by repressing the photomorphogenic responses and/or maintaining the skotomorphogenic state of etiolated seedlings. Here we report that the plant hormone ethylene plays a crucial role in the transition from skotomorphogenesis to photomorphogenesis by facilitating greening of etiolated seedlings upon light irradiation. Activation of EIN3/EIL1 is both necessary and sufficient for ethylene-induced enhancement of seedling greening, as well as repression of the accumulation of protochlorophyllide, a phototoxic intermediate of chlorophyll synthesis. EIN3/EIL1 were found to induce gene expression of two key enzymes in the chlorophyll synthesis pathway, protochlorophyllide oxidoreductase A and B (PORA/B). ChIP and EMSA assays demonstrated that EIN3 directly binds to the specific elements present in the PORA and PORB promoters. Genetic studies revealed that EIN3/EIL1 function in cooperation with PIF1 in preventing photo-oxidative damage and promoting cotyledon greening. Moreover, activation of EIN3 reverses the blockage of greening triggered by cop1 mutation or far-red light irradiation. Consistently, EIN3 acts downstream of COP1 and its protein accumulation is enhanced by COP1 but decreased by light. Taken together, EIN3/EIL1 represent a new class of transcriptional regulators along with PIF1 to optimize de-etiolation of Arabidopsis seedlings. Our study highlights the essential role of ethylene in enhancing seedling development and survival through protecting etiolated seedlings against photo-oxidative damage.
从暗形态建成到光形态建成的转变能力对于幼苗发育和植物生存至关重要。最近的研究表明,COP1 和光敏色素相互作用因子(PIFs)通过抑制光形态建成反应和/或维持黄化幼苗的暗形态建成状态来调控这种转变。在这里,我们报告植物激素乙烯通过促进光照射下黄化幼苗的变绿,在从暗形态建成到光形态建成的转变中起着关键作用。EIN3/EIL1 的激活对于乙烯诱导的幼苗变绿增强以及抑制叶绿素合成的光毒性中间产物原叶绿素的积累是必要和充分的。发现 EIN3/EIL1 诱导叶绿素合成途径中的两个关键酶,原叶绿素氧化还原酶 A 和 B(PORA/B)的基因表达。ChIP 和 EMSA 测定表明,EIN3 直接结合 PORA 和 PORB 启动子中存在的特定元件。遗传研究表明,EIN3/EIL1 与 PIF1 合作,防止光氧化损伤并促进子叶变绿。此外,EIN3 的激活逆转了 cop1 突变或远红光照射引发的变绿受阻。一致地,EIN3 作用于 COP1 的下游,其蛋白积累受 COP1 增强,受光减弱。总之,EIN3/EIL1 与 PIF1 一起代表了一类新的转录调节剂,以优化拟南芥幼苗的去黄化。我们的研究强调了乙烯在通过保护黄化幼苗免受光氧化损伤来增强幼苗发育和生存方面的重要作用。