Suppr超能文献

功能解剖学对小脑深部核团信息处理的影响

Implications of functional anatomy on information processing in the deep cerebellar nuclei.

作者信息

Baumel Yuval, Jacobson Gilad A, Cohen Dana

机构信息

Gonda Interdisciplinary Brain Research Center, Bar Ilan University Ramat Gan, Israel.

出版信息

Front Cell Neurosci. 2009 Nov 20;3:14. doi: 10.3389/neuro.03.014.2009. eCollection 2009.

Abstract

The cerebellum has been implicated as a major player in producing temporal acuity. Theories of cerebellar timing typically emphasize the role of the cerebellar cortex while overlooking the role of the deep cerebellar nuclei (DCN) that provide the sole output of the cerebellum. Here we review anatomical and electrophysiological studies to shed light on the DCN's ability to support temporal pattern generation in the cerebellum. Specifically, we examine data on the structure of the DCN, the biophysical properties of DCN neurons and properties of the afferent systems to evaluate their contribution to DCN firing patterns. In addition, we manipulate one of the afferent structures, the inferior olive (IO), using systemic harmaline injection to test for a network effect on activity of single DCN neurons in freely moving animals. Harmaline induces a rhythmic firing pattern of short bursts on a quiescent background at about 8 Hz. Other neurons become quiescent for long periods (seconds to minutes). The observed patterns indicate that the major effect harmaline exerts on the DCN is carried indirectly by the inhibitory Purkinje cells (PCs) activated by the IO, rather than by direct olivary excitation. Moreover, we suggest that the DCN response profile is determined primarily by the number of concurrently active PCs, their firing rate and the level of synchrony occurring in their transitions between continuous firing and quiescence. We argue that DCN neurons faithfully transfer temporal patterns resulting from strong correlations in PCs state transitions, while largely ignoring the timing of simple spikes from individual PCs. Future research should aim at quantifying the contribution of PC state transitions to DCN activity, and the interplay between the different afferent systems that drive DCN activity.

摘要

小脑被认为是产生时间敏锐度的主要参与者。小脑计时理论通常强调小脑皮质的作用,而忽视了作为小脑唯一输出的小脑深部核团(DCN)的作用。在这里,我们回顾解剖学和电生理学研究,以阐明DCN支持小脑时间模式生成的能力。具体而言,我们研究了关于DCN结构、DCN神经元生物物理特性以及传入系统特性的数据,以评估它们对DCN放电模式的贡献。此外,我们通过全身注射哈马灵来操纵其中一个传入结构——下橄榄核(IO),以测试对自由活动动物单个DCN神经元活动的网络效应。哈马灵在静止背景上以约8Hz的频率诱导出短脉冲的节律性放电模式。其他神经元会长时间静止(数秒至数分钟)。观察到的模式表明,哈马灵对DCN施加的主要影响是由IO激活的抑制性浦肯野细胞(PC)间接介导的,而不是由橄榄核的直接兴奋介导的。此外,我们认为DCN的反应特征主要由同时活跃的PC数量、它们的放电频率以及它们在持续放电和静止之间转换时的同步水平决定。我们认为DCN神经元忠实地传递由PC状态转换中的强相关性产生的时间模式,而在很大程度上忽略了单个PC简单尖峰的时间。未来的研究应旨在量化PC状态转换对DCN活动 的贡献,以及驱动DCN活动的不同传入系统之间的相互作用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b569/2783015/e0574fda99b4/fncel-03-014-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验