Department of Biophysics and Biophysical Chemistry, Johns Hopkins School of Medicine, Baltimore, Maryland 21205, USA.
Proteins. 2010 Apr;78(5):1105-19. doi: 10.1002/prot.22632.
The growing dataset of K(+) channel x-ray structures provides an excellent opportunity to begin a detailed molecular understanding of voltage-dependent gating. These structures, while differing in sequence, represent either a stable open or closed state. However, an understanding of the molecular details of gating will require models for the transitions and experimentally testable predictions for the gating transition. To explore these ideas, we apply dynamic importance sampling to a set of homology models for the molecular conformations of K(+) channels for four different sets of sequences and eight different states. In our results, we highlight the importance of particular residues upstream from the Pro-Val-Pro (PVP) region to the gating transition. This supports growing evidence that the PVP region is important for influencing the flexibility of the S6 helix and thus the opening of the gating domain. The results further suggest how gating on the molecular level depends on intra-subunit motions to influence the cooperative behavior of all four subunits of the K(+) channel. We hypothesize that the gating process occurs in steps: first sidechain movement, then inter-S5-S6 subunit motions, and lastly the large-scale domain rearrangements.
越来越多的 K(+) 通道 X 射线结构数据集为开始深入了解电压门控的分子机制提供了绝佳机会。这些结构虽然序列不同,但代表的是稳定的开放或关闭状态。然而,要理解门控的分子细节,需要有门控跃迁的模型和可用于实验验证的门控跃迁预测。为了探索这些想法,我们对来自四个不同序列和八个不同状态的 K(+) 通道分子构象的一组同源模型应用了动态重要性采样。在我们的结果中,我们强调了 PVP 区域上游特定残基在门控跃迁中的重要性。这进一步证明了 PVP 区域对于影响 S6 螺旋的灵活性以及门控域的开启非常重要。结果还表明,分子水平上的门控如何取决于亚基内运动,以影响 K(+) 通道的所有四个亚基的协同行为。我们假设门控过程分步骤进行:首先是侧链运动,然后是 S5-S6 亚基间的运动,最后是大规模的结构域重排。