Max Planck Institute for the Science of Light, Günther-Scharowsky-Strasse 1/Bau 24, 91058 Erlangen, Germany.
Opt Lett. 2009 Dec 1;34(23):3674-6. doi: 10.1364/OL.34.003674.
A great challenge in microfluidics is the precise control of laser radiation forces acting on single particles or cells, while allowing monitoring of their optical and chemical properties. We show that, in the liquid-filled hollow core of a single-mode photonic crystal fiber, a micrometer-sized particle can be held stably against a fluidic counterflow using radiation pressure and can be moved to and fro (over tens of centimeters) by ramping the laser power up and down. Accurate studies of the microfluidic drag forces become possible, because the particle is trapped in the center of the single guided optical mode, resulting in highly reproducible radiation forces. The counterflowing liquid can be loaded with sequences of chemicals in precisely controlled concentrations and doses, making possible studies of single particles, vesicles, or cells.
微流控领域的一个巨大挑战是精确控制作用于单个粒子或细胞的激光辐射力,同时允许监测它们的光学和化学性质。我们表明,在单模光子晶体光纤的充满液体的中空核心内,可以使用辐射压力将微米级大小的粒子稳定地固定在逆流上,并通过上下调整激光功率将其来回移动(超过数十厘米)。由于粒子被困在单导光模式的中心,因此可以进行准确的微流体阻力研究,从而产生高度可重复的辐射力。可以将具有精确控制浓度和剂量的化学物质序列加载到逆流液体中,从而可以对单个粒子、囊泡或细胞进行研究。