Suppr超能文献

量子产率测量 DNA 光解酶中短寿命光激活中间体:深入了解三色氨酸电子转移链。

Quantum yield measurements of short-lived photoactivation intermediates in DNA photolyase: toward a detailed understanding of the triple tryptophan electron transfer chain.

机构信息

CEA, IBITECS, Laboratoire de Photocatalyse et Biohydrogène, Gif sur Yvette, F-91191, France.

出版信息

J Phys Chem A. 2010 Mar 11;114(9):3207-14. doi: 10.1021/jp9093589.

Abstract

The light-dependent DNA repair enzyme photolyase contains a unique evolutionary conserved triple tryptophan electron transfer chain (W382-W359-W306 in photolyase from E. coli) that bridges the approximately 15 A distance between the buried flavin adenine dinucleotide (FAD) cofactor and the surface of the protein. Upon excitation of the semireduced flavin (FADH(o)), electron transfer through the chain leads to formation of fully reduced flavin (FADH(-); required for DNA repair) and oxidation of the most remote tryptophan residue W306, followed by its deprotonation. The thus-formed tryptophanyl radical W306(o)(+) is reduced either by an extrinsic reductant or by reverse electron transfer from FADH(-). Altogether the kinetics of these charge transfer reactions span 10 orders of magnitude, from a few picoseconds to tens of milliseconds. We investigated electron transfer processes in the picosecond-nanosecond time window bridging the time domains covered by ultrafast pump-probe and "classical" continuous probe techniques. Using a recent dedicated setup, we directly show that virtually no absorption change between 300 ps and 10 ns occurs in wild-type photolyase, implying that no charge recombination takes place in this time window. In contrast, W306F mutant photolyase showed a partial absorption recovery with a time constant of 0.85 ns. In wild-type photolyase, the quantum yield of FADH(-) W306(o)(+) was found at 19 +/- 4%, in reference to the established quantum yield of the long-lived excited state of Ru(bpy)(3). With this yield, the optical spectrum of the excited state of FADH(o) can be constructed from ultrafast spectroscopic data; this spectrum is dominated by excited state absorption extending from below 450 to 850 nm. The new experimental results, taken together with previous data, allow us to propose a detailed kinetic and energetic scheme of the electron transfer chain.

摘要

光依赖型 DNA 修复酶光解酶含有一个独特的进化保守的三色氨酸电子转移链(大肠杆菌光解酶中的 W382-W359-W306),它在大约 15Å 的距离上连接了被掩埋的黄素腺嘌呤二核苷酸(FAD)辅因子和蛋白质表面。在半还原黄素(FADH(o))被激发后,电子通过该链的转移导致完全还原的黄素(FADH(-);用于 DNA 修复)的形成和最远端色氨酸残基 W306 的氧化,随后其去质子化。由此形成的色氨酰自由基 W306(o)(+)要么被外部还原剂还原,要么通过 FADH(-)的反向电子转移还原。总的来说,这些电荷转移反应的动力学跨越了 10 个数量级,从几皮秒到几十毫秒。我们研究了在皮秒-纳秒时间窗口中的电子转移过程,该时间窗口连接了超快泵浦-探针和“经典”连续探针技术所涵盖的时间域。使用最近的专用设备,我们直接证明在野生型光解酶中,在 300 ps 和 10 ns 之间几乎没有吸收变化,这意味着在这个时间窗口内没有电荷复合发生。相比之下,W306F 突变型光解酶显示出具有 0.85 ns 时间常数的部分吸收恢复。在野生型光解酶中,FADH(-)W306(o)(+)的量子产率为 19 +/- 4%,以 Ru(bpy)(3)的长寿命激发态的建立量子产率为参考。有了这个产率,就可以从超快光谱数据构建 FADH(o)激发态的光学光谱;该光谱主要由从 450nm 以下延伸到 850nm 的激发态吸收组成。新的实验结果与以前的数据一起,使我们能够提出电子转移链的详细动力学和能量方案。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验