Suppr超能文献

基于回归的基因组控制方法校正隐晦的相关性。

Correcting for cryptic relatedness by a regression-based genomic control method.

机构信息

Department of Statistics and Finance, University of Science and Technology of China, Hefei, Anhui 230026, PR China.

出版信息

BMC Genet. 2009 Dec 2;10:78. doi: 10.1186/1471-2156-10-78.

Abstract

BACKGROUND

Genomic control (GC) method is a useful tool to correct for the cryptic relatedness in population-based association studies. It was originally proposed for correcting for the variance inflation of Cochran-Armitage's additive trend test by using information from unlinked null markers, and was later generalized to be applicable to other tests with the additional requirement that the null markers are matched with the candidate marker in allele frequencies. However, matching allele frequencies limits the number of available null markers and thus limits the applicability of the GC method. On the other hand, errors in genotype/allele frequencies may cause further bias and variance inflation and thereby aggravate the effect of GC correction.

RESULTS

In this paper, we propose a regression-based GC method using null markers that are not necessarily matched in allele frequencies with the candidate marker. Variation of allele frequencies of the null markers is adjusted by a regression method.

CONCLUSION

The proposed method can be readily applied to the Cochran-Armitage's trend tests other than the additive trend test, the Pearson's chi-square test and other robust efficiency tests. Simulation results show that the proposed method is effective in controlling type I error in the presence of population substructure.

摘要

背景

基因组控制(GC)方法是一种有用的工具,可以纠正基于人群的关联研究中隐藏的相关性。它最初是通过使用非连锁无效标记的信息来校正 Cochran-Armitage 的加性趋势检验的方差膨胀而提出的,后来被推广到适用于其他检验,附加要求是无效标记与候选标记在等位基因频率上匹配。然而,等位基因频率的匹配限制了可用无效标记的数量,从而限制了 GC 方法的适用性。另一方面,基因型/等位基因频率的误差可能会导致进一步的偏差和方差膨胀,从而加剧 GC 校正的效果。

结果

在本文中,我们提出了一种基于回归的 GC 方法,使用的无效标记与候选标记在等位基因频率上不一定匹配。通过回归方法调整无效标记的等位基因频率变化。

结论

所提出的方法可以很容易地应用于 Cochran-Armitage 的趋势检验,而不仅仅是加性趋势检验、Pearson's chi-square 检验和其他稳健效率检验。模拟结果表明,该方法在存在群体亚结构的情况下能有效地控制Ⅰ型错误。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b83c/3087514/0198dd980b3f/1471-2156-10-78-1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验