Suppr超能文献

关联研究的基因组控制

Genomic control for association studies.

作者信息

Devlin B, Roeder K

机构信息

Department of Psychiatry, University of Pittsburgh, Pennsylvania 15213, USA.

出版信息

Biometrics. 1999 Dec;55(4):997-1004. doi: 10.1111/j.0006-341x.1999.00997.x.

Abstract

A dense set of single nucleotide polymorphisms (SNP) covering the genome and an efficient method to assess SNP genotypes are expected to be available in the near future. An outstanding question is how to use these technologies efficiently to identify genes affecting liability to complex disorders. To achieve this goal, we propose a statistical method that has several optimal properties: It can be used with case control data and yet, like family-based designs, controls for population heterogeneity; it is insensitive to the usual violations of model assumptions, such as cases failing to be strictly independent; and, by using Bayesian outlier methods, it circumvents the need for Bonferroni correction for multiple tests, leading to better performance in many settings while still constraining risk for false positives. The performance of our genomic control method is quite good for plausible effects of liability genes, which bodes well for future genetic analyses of complex disorders.

摘要

预计在不久的将来会有一组覆盖基因组的密集单核苷酸多态性(SNP)以及一种评估SNP基因型的有效方法。一个突出的问题是如何有效利用这些技术来识别影响复杂疾病易感性的基因。为实现这一目标,我们提出了一种具有若干最优特性的统计方法:它可用于病例对照数据,并且像基于家系的设计一样,能控制群体异质性;它对模型假设的常见违背情况不敏感,比如病例并非严格独立;而且,通过使用贝叶斯离群值方法,它无需对多重检验进行邦费罗尼校正,在许多情况下能带来更好的性能,同时仍能控制假阳性风险。对于易感性基因的合理效应,我们的基因组控制方法表现相当出色,这为未来复杂疾病的基因分析预示了良好前景。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验