Zheng Gang, Freidlin Boris, Gastwirth Joseph L
Office of Biostatistics Research, Division of Epidemiology and Clinical Applications, National Heart, Lung and Blood Institute, Bethesda, MD 20892, USA.
Am J Hum Genet. 2006 Feb;78(2):350-6. doi: 10.1086/500054. Epub 2005 Dec 22.
Population-based case-control studies are a useful method to test for a genetic association between a trait and a marker. However, the analysis of the resulting data can be affected by population stratification or cryptic relatedness, which may inflate the variance of the usual statistics, resulting in a higher-than-nominal rate of false-positive results. One approach to preserving the nominal type I error is to apply genomic control, which adjusts the variance of the Cochran-Armitage trend test by calculating the statistic on data from null loci. This enables one to estimate any additional variance in the null distribution of statistics. When the underlying genetic model (e.g., recessive, additive, or dominant) is known, genomic control can be applied to the corresponding optimal trend tests. In practice, however, the mode of inheritance is unknown. The genotype-based chi (2) test for a general association between the trait and the marker does not depend on the underlying genetic model. Since this general association test has 2 degrees of freedom (df), the existing formulas for estimating the variance factor by use of genomic control are not directly applicable. By expressing the general association test in terms of two Cochran-Armitage trend tests, one can apply genomic control to each of the two trend tests separately, thereby adjusting the chi (2) statistic. The properties of this robust genomic control test with 2 df are examined by simulation. This genomic control-adjusted 2-df test has control of type I error and achieves reasonable power, relative to the optimal tests for each model.
基于人群的病例对照研究是检验性状与标记之间遗传关联的一种有用方法。然而,对所得数据的分析可能会受到人群分层或隐性相关性的影响,这可能会使常规统计量的方差膨胀,导致假阳性结果率高于名义水平。保持名义I型错误率的一种方法是应用基因组控制,即通过计算来自无效位点的数据的统计量来调整 Cochr an - Armitage趋势检验的方差。这使得人们能够估计统计量无效分布中的任何额外方差。当潜在的遗传模型(例如隐性、加性或显性)已知时,基因组控制可应用于相应的最优趋势检验。然而,在实际中,遗传模式是未知的。基于基因型的性状与标记之间一般关联的卡方检验不依赖于潜在的遗传模型。由于这种一般关联检验有2个自由度(df),现有的利用基因组控制估计方差因子的公式不能直接应用。通过将一般关联检验表示为两个 Cochr an - Armitage趋势检验,可以分别对两个趋势检验中的每一个应用基因组控制,从而调整卡方统计量。通过模拟研究了这种具有2个自由度的稳健基因组控制检验的性质。相对于每个模型的最优检验,这种经基因组控制调整的2自由度检验具有I型错误控制能力并具有合理的检验效能。