From the Department of Physiological Chemistry, University of Veterinary Medicine Hannover, D-30559 Hannover, Germany and.
the Instituto de Agroquímica y Tecnología de Alimentos, Consejo Superior de Investigaciones Científicas, Apartado de Correos 73, Burjassot, E46100 Valencia, Spain.
J Biol Chem. 2010 Feb 5;285(6):4143-4152. doi: 10.1074/jbc.M109.060780. Epub 2009 Dec 2.
Human intestinal lactase-phlorizin hydrolase, LPH, encompasses four homologous domains, which presumably have evolved from two subsequent duplications of one ancestral gene. The profragment, LPHalpha, comprises homologous domains I and II and functions as an intramolecular chaperone in the context of the brush-border LPHbeta region of LPH. Here, we analyze the inter-relationship between homologous domains III and IV of LPHbeta and their implication in the overall structure, function, and trafficking of LPH. In silico analyses revealed potential domain boundaries for these domains as a basis for loop-out mutagenesis and construction of deletion or individual domain forms of LPH. Removal of domain IV, which contains lactase, results in a diminished phlorizin hydrolase activity, lack of dimerization in the endoplasmic reticulum (ER), but accelerated transport kinetics from the ER to the Golgi apparatus. By contrast, deletion of domain III, which harbors phlorizin hydrolase, generates a malfolded protein that is blocked in the ER. Interestingly, homologous domain III is transport-competent per se and sorted to the apical membrane in polarized Madin-Darby canine kidney cells. Nevertheless, it neither dimerizes nor acquires complete phlorizin hydrolase activity. Our data present a hierarchical model of LPH in which the homologous domain III constitutes (i) a fully autonomous core domain within LPH and (ii) another intramolecular chaperone besides the profragment LPHalpha. Nevertheless, the regulation of the trafficking kinetics and activity of domain III and entire LPH including elevation of the enzymatic activities require the correct dimerization of LPH in the ER, an event that is accomplished by the non-autonomous domain IV.
人肠道乳糖酶-植物甾醇苷水解酶(LPH)包含四个同源结构域,这些结构域可能是由一个祖先基因的两次连续复制进化而来。前片段 LPHalpha 包含同源结构域 I 和 II,在 LPH 的刷状缘 LPHbeta 区域中作为分子内伴侣发挥作用。在这里,我们分析了 LPHbeta 的同源结构域 III 和 IV 之间的相互关系及其对 LPH 整体结构、功能和运输的影响。计算机分析揭示了这些结构域的潜在结构域边界,作为环出诱变和构建 LPH 的缺失或单个结构域形式的基础。去除含有乳糖酶的结构域 IV 会导致植酸水解酶活性降低、内质网(ER)中二聚化缺失,但 ER 到高尔基体的运输动力学加快。相比之下,删除含有植酸水解酶的结构域 III 会产生错误折叠的蛋白质,从而在 ER 中受阻。有趣的是,同源结构域 III 本身具有运输能力,并在极化的 Madin-Darby 犬肾细胞中被分拣到顶膜。然而,它既不能二聚化,也不能获得完整的植酸水解酶活性。我们的数据提出了 LPH 的一个层次模型,其中同源结构域 III 构成(i)LPH 内的一个完全自主的核心结构域,(ii)除前片段 LPHalpha 之外的另一个分子内伴侣。然而,结构域 III 和整个 LPH 的运输动力学和活性的调节,包括酶活性的提高,都需要 LPH 在 ER 中的正确二聚化,这一事件是由非自主结构域 IV 完成的。