Suppr超能文献

概率离散事件系统的状态估计与可检测性

State Estimation and Detectability of Probabilistic Discrete Event Systems.

作者信息

Shu Shaolong, Lin Feng, Ying Hao, Chen Xinguang

机构信息

School of Electronics and Information Engineering, Tongji University, Shanghai, China.

出版信息

Automatica (Oxf). 2008 Dec 1;44(12):3054-3060. doi: 10.1016/j.automatica.2008.05.025.

Abstract

A probabilistic discrete event system (PDES) is a nondeterministic discrete event system where the probabilities of nondeterministic transitions are specified. State estimation problems of PDES are more difficult than those of non-probabilistic discrete event systems. In our previous papers, we investigated state estimation problems for non-probabilistic discrete event systems. We defined four types of detectabilities and derived necessary and sufficient conditions for checking these detectabilities. In this paper, we extend our study to state estimation problems for PDES by considering the probabilities. The first step in our approach is to convert a given PDES into a nondeterministic discrete event system and find sufficient conditions for checking probabilistic detectabilities. Next, to find necessary and sufficient conditions for checking probabilistic detectabilities, we investigate the "convergence" of event sequences in PDES. An event sequence is convergent if along this sequence, it is more and more certain that the system is in a particular state. We derive conditions for convergence and hence for detectabilities. We focus on systems with complete event observation and no state observation. For better presentation, the theoretical development is illustrated by a simplified example of nephritis diagnosis.

摘要

概率离散事件系统(PDES)是一种非确定性离散事件系统,其中指定了非确定性转移的概率。PDES的状态估计问题比非概率离散事件系统的状态估计问题更难。在我们之前的论文中,我们研究了非概率离散事件系统的状态估计问题。我们定义了四种可检测性类型,并推导了检查这些可检测性的充分必要条件。在本文中,我们通过考虑概率将研究扩展到PDES的状态估计问题。我们方法的第一步是将给定的PDES转换为非确定性离散事件系统,并找到检查概率可检测性的充分条件。接下来,为了找到检查概率可检测性的充分必要条件,我们研究PDES中事件序列的“收敛性”。如果沿着这个序列,系统处于特定状态的确定性越来越高,那么这个事件序列就是收敛的。我们推导了收敛条件,从而也得到了可检测性条件。我们关注具有完整事件观测但无状态观测的系统。为了更好地呈现,通过一个简化的肾炎诊断示例来说明理论发展。

相似文献

1
2
Generalized Detectability for Discrete Event Systems.离散事件系统的广义可检测性
Syst Control Lett. 2011 May 1;60(5):310-317. doi: 10.1016/j.sysconle.2011.02.001.
4
State Estimation for Probabilistic Boolean Networks via Outputs Observation.基于输出观测的概率布尔网络状态估计
IEEE Trans Neural Netw Learn Syst. 2022 Sep;33(9):4699-4711. doi: 10.1109/TNNLS.2021.3059795. Epub 2022 Aug 31.
9
Stochastic Fuzzy Discrete Event Systems and Their Model Identification.
IEEE Trans Cybern. 2024 Jul;54(7):3994-4001. doi: 10.1109/TCYB.2023.3270669. Epub 2024 Jul 11.

引用本文的文献

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验