Suppr超能文献

利用横断面数据对青少年饮酒行为进展进行建模:解决一个未充分识别的概率离散事件系统。

Modeling Drinking Behavior Progression in Youth with Cross-sectional Data: Solving an Under-identified Probabilistic Discrete Event System.

作者信息

Hu Xingdi, Chen Xinguang, Cook Robert L, Chen Ding-Geng, Okafor Chukwuemeka

机构信息

Department of Epidemiology, University of Florida, Gainesville, Florida, USA.

出版信息

Curr HIV Res. 2016;14(2):93-100. doi: 10.2174/1570162x13666151029102044.

Abstract

BACKGROUND

The probabilistic discrete event systems (PDES) method provides a promising approach to study dynamics of underage drinking using cross-sectional data. However, the utility of this approach is often limited because the constructed PDES model is often non-identifiable. The purpose of the current study is to attempt a new method to solve the model.

METHODS

A PDES-based model of alcohol use behavior was developed with four progression stages (never-drinkers [ND], light/moderate-drinker [LMD], heavy-drinker [HD], and ex-drinker [XD]) linked with 13 possible transition paths. We tested the proposed model with data for participants aged 12-21 from the 2012 National Survey on Drug Use and Health (NSDUH). The Moore-Penrose (M-P) generalized inverse matrix method was applied to solve the proposed model.

RESULTS

Annual transitional probabilities by age groups for the 13 drinking progression pathways were successfully estimated with the M-P generalized inverse matrix approach. Result from our analysis indicates an inverse "J" shape curve characterizing pattern of experimental use of alcohol from adolescence to young adulthood. We also observed a dramatic increase for the initiation of LMD and HD after age 18 and a sharp decline in quitting light and heavy drinking.

CONCLUSION

Our findings are consistent with the developmental perspective regarding the dynamics of underage drinking, demonstrating the utility of the M-P method in obtaining a unique solution for the partially-observed PDES drinking behavior model. The M-P approach we tested in this study will facilitate the use of the PDES approach to examine many health behaviors with the widely available cross-sectional data.

摘要

背景

概率离散事件系统(PDES)方法为利用横断面数据研究未成年人饮酒动态提供了一种有前景的途径。然而,这种方法的实用性往往受到限制,因为构建的PDES模型通常不可识别。本研究的目的是尝试一种新的方法来求解该模型。

方法

开发了一个基于PDES的酒精使用行为模型,该模型有四个进展阶段(从不饮酒者[ND]、轻度/中度饮酒者[LMD]、重度饮酒者[HD]和戒酒者[XD]),并与13条可能的转变路径相关联。我们使用2012年全国药物使用和健康调查(NSDUH)中12 - 21岁参与者的数据对所提出的模型进行了测试。应用摩尔 - 彭罗斯(M - P)广义逆矩阵方法来求解所提出的模型。

结果

利用M - P广义逆矩阵方法成功估计了13条饮酒进展路径按年龄组划分的年度转移概率。我们的分析结果表明,从青春期到青年期的酒精尝试模式呈现出倒“J”形曲线。我们还观察到18岁以后轻度/中度饮酒者和重度饮酒者开始饮酒的人数急剧增加,而戒酒的轻度和重度饮酒者人数急剧下降。

结论

我们的研究结果与关于未成年人饮酒动态的发展观点一致,证明了M - P方法在为部分观测的PDES饮酒行为模型获得唯一解方面的实用性。我们在本研究中测试的M - P方法将有助于利用PDES方法,通过广泛可得的横断面数据来研究许多健康行为。

相似文献

8
Alcohol marketing receptivity, marketing-specific cognitions, and underage binge drinking.酒精营销接受度、营销特定认知与未成年 binge drinking。
Alcohol Clin Exp Res. 2013 Jan;37 Suppl 1(Suppl 1):E404-13. doi: 10.1111/j.1530-0277.2012.01932.x. Epub 2012 Dec 19.

本文引用的文献

7
Age-period-cohort models in cancer surveillance research: ready for prime time?癌症监测研究中的年龄-时期-队列模型:是否已经成熟?
Cancer Epidemiol Biomarkers Prev. 2011 Jul;20(7):1263-8. doi: 10.1158/1055-9965.EPI-11-0421. Epub 2011 May 24.
10

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验