Suppr超能文献

基于质谱数据的特征选择与机器学习

Feature selection and machine learning with mass spectrometry data.

作者信息

Datta Susmita, Pihur Vasyl

机构信息

Department of Bioinformatics and Biostatistics, School of Public Health and Information Sciences, University of Louisville, Louisville, KY, USA.

出版信息

Methods Mol Biol. 2010;593:205-29. doi: 10.1007/978-1-60327-194-3_11.

Abstract

Mass spectrometry has been used in biochemical research for a long time. However, its potential for discovering proteomic biomarkers using protein mass spectra has aroused tremendous interest in the last few years. In spite of its potential for biomarker discovery, it is recognized that the identification of meaningful proteomic features from mass spectra needs careful evaluation. Hence, extracting meaningful features and discriminating the samples based on these features are still open areas of research. Several research groups are actively involved in making the process as perfect as possible. In this chapter, we provide a review of major contributions toward feature selection and classification of proteomic mass spectra involving MALDI-TOF and SELDI-TOF technology.

摘要

质谱分析法在生化研究中已应用了很长时间。然而,其利用蛋白质质谱发现蛋白质组学生物标志物的潜力在过去几年引起了极大的关注。尽管它具有发现生物标志物的潜力,但人们认识到,从质谱中识别有意义的蛋白质组学特征需要仔细评估。因此,提取有意义的特征并基于这些特征区分样本仍然是有待研究的领域。几个研究小组正积极致力于使这一过程尽可能完善。在本章中,我们综述了在涉及基质辅助激光解吸电离飞行时间(MALDI-TOF)和表面增强激光解吸电离飞行时间(SELDI-TOF)技术的蛋白质组质谱特征选择和分类方面的主要贡献。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验