Suppr超能文献

N 端信号肽预测方法的综合评估。

A comprehensive assessment of N-terminal signal peptides prediction methods.

机构信息

Institute for Infocomm Research, 1 Fusionopolis Way, #21-01 Connexis, Singapore.

出版信息

BMC Bioinformatics. 2009 Dec 3;10 Suppl 15(Suppl 15):S2. doi: 10.1186/1471-2105-10-S15-S2.

Abstract

BACKGROUND

Amino-terminal signal peptides (SPs) are short regions that guide the targeting of secretory proteins to the correct subcellular compartments in the cell. They are cleaved off upon the passenger protein reaching its destination. The explosive growth in sequencing technologies has led to the deposition of vast numbers of protein sequences necessitating rapid functional annotation techniques, with subcellular localization being a key feature. Of the myriad software prediction tools developed to automate the task of assigning the SP cleavage site of these new sequences, we review here, the performance and reliability of commonly used SP prediction tools.

RESULTS

The available signal peptide data has been manually curated and organized into three datasets representing eukaryotes, Gram-positive and Gram-negative bacteria. These datasets are used to evaluate thirteen prediction tools that are publicly available. SignalP (both the HMM and ANN versions) maintains consistency and achieves the best overall accuracy in all three benchmarking experiments, ranging from 0.872 to 0.914 although other prediction tools are narrowing the performance gap.

CONCLUSION

The majority of the tools evaluated in this study encounter no difficulty in discriminating between secretory and non-secretory proteins. The challenge clearly remains with pinpointing the correct SP cleavage site. The composite scoring schemes employed by SignalP may help to explain its accuracy. Prediction task is divided into a number of separate steps, thus allowing each score to tackle a particular aspect of the prediction.

摘要

背景

氨基末端信号肽(SP)是短序列,可引导分泌蛋白靶向细胞中正确的亚细胞区室。当载体蛋白到达目的地时,它们会被切割掉。测序技术的飞速发展导致了大量蛋白质序列的沉积,这就需要快速的功能注释技术,其中亚细胞定位是一个关键特征。为了自动完成这些新序列的 SP 切割位点分配任务,已经开发了无数软件预测工具,我们在这里回顾了常用的 SP 预测工具的性能和可靠性。

结果

可用的信号肽数据经过人工整理,并组织成代表真核生物、革兰氏阳性菌和革兰氏阴性菌的三个数据集。这些数据集用于评估十三种公开可用的预测工具。SignalP(包括 HMM 和 ANN 版本)在所有三个基准测试实验中都保持一致性,并实现了最佳的整体准确性,范围从 0.872 到 0.914,尽管其他预测工具正在缩小性能差距。

结论

在这项研究中评估的大多数工具在区分分泌蛋白和非分泌蛋白方面没有遇到困难。挑战仍然在于精确定位正确的 SP 切割位点。SignalP 采用的综合评分方案可能有助于解释其准确性。预测任务分为多个单独的步骤,从而使每个分数都可以解决预测的特定方面。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e497/2788353/4a211cc096b0/1471-2105-10-S15-S2-1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验