From the Department of Biophysics, Graduate School of Science, Kyoto University, Oiwake, Kitashirakawa, Sakyo-ku, Kyoto 606-8502; the Japan Biological Informatics Consortium, Oiwake, Kitashirakawa, Sakyo-ku, Kyoto 606-8502, and.
From the Department of Biophysics, Graduate School of Science, Kyoto University, Oiwake, Kitashirakawa, Sakyo-ku, Kyoto 606-8502.
J Biol Chem. 2010 Feb 5;285(6):3685-3694. doi: 10.1074/jbc.M109.057455. Epub 2009 Dec 3.
Prokaryotic voltage-gated sodium channels (Na(V)s) are homotetramers and are thought to inactivate through a single mechanism, named C-type inactivation. Here we report the voltage dependence and inactivation rate of the NaChBac channel from Bacillus halodurans, the first identified prokaryotic Na(V), as well as of three new homologues cloned from Bacillus licheniformis (Na(V)BacL), Shewanella putrefaciens (Na(V)SheP), and Roseobacter denitrificans (Na(V)RosD). We found that, although activated by a lower membrane potential, Na(V)BacL inactivates as slowly as NaChBac. Na(V)SheP and Na(V)RosD inactivate faster than NaChBac. Mutational analysis of helix S6 showed that residues corresponding to the "glycine hinge" and "PXP motif" in voltage-gated potassium channels are not obligatory for channel gating in these prokaryotic Na(V)s, but mutations in the regions changed the inactivation rates. Mutation of the region corresponding to the glycine hinge in Na(V)BacL (A214G), Na(V)SheP (A216G), and NaChBac (G219A) accelerated inactivation in these channels, whereas mutation of glycine to alanine in the lower part of helix S6 in NaChBac (G229A), Na(V)BacL (G224A), and Na(V)RosD (G217A) reduced the inactivation rate. These results imply that activation gating in prokaryotic Na(V)s does not require gating motifs and that the residues of helix S6 affect C-type inactivation rates in these channels.
原核电压门控钠离子通道(Na(V)s)是同源四聚体,被认为通过一种称为 C 型失活的单一机制失活。在这里,我们报告了来自巴氏芽孢杆菌的 NaChBac 通道的电压依赖性和失活速率,这是第一个被鉴定的原核 Na(V),以及从地衣芽孢杆菌(Na(V)BacL)、腐败希瓦氏菌(Na(V)SheP)和脱氮玫瑰杆菌(Na(V)RosD)克隆的三个新同源物。我们发现,尽管 Na(V)BacL 的激活膜电位较低,但失活速度与 NaChBac 一样慢。Na(V)SheP 和 Na(V)RosD 的失活速度比 NaChBac 快。S6 螺旋突变分析表明,与电压门控钾通道中的“甘氨酸铰链”和“PXP 基序”相对应的残基对于这些原核 Na(V)s 的通道门控不是必需的,但这些区域的突变改变了失活速率。Na(V)BacL(A214G)、Na(V)SheP(A216G)和 NaChBac(G219A)中对应甘氨酸铰链的区域的突变加速了这些通道的失活,而 NaChBac(G229A)、Na(V)BacL(G224A)和 Na(V)RosD(G217A)中 S6 螺旋下部甘氨酸突变为丙氨酸降低了失活速率。这些结果表明,原核 Na(V)s 的激活门控不需要门控基序,并且 S6 螺旋的残基影响这些通道的 C 型失活速率。