Department of Pharmacology, University of Washington, Seattle WA 98195-7280, USA.
Cell Chem Biol. 2024 Aug 15;31(8):1405-1421. doi: 10.1016/j.chembiol.2024.07.010.
Electrical signaling is essential for all fast processes in biology, but its molecular mechanisms have been uncertain. This review article focuses on studies of bacterial sodium channels in order to home in on the essential molecular and chemical mechanisms underlying transmembrane ion conductance and voltage-dependent gating without the overlay of complex protein interactions and regulatory mechanisms in mammalian sodium channels. This minimalist approach has yielded a nearly complete picture of sodium channel function at the atomic level that are mostly conserved in mammalian sodium channels, including sodium selectivity and conductance, voltage sensing and activation, electromechanical coupling to pore opening and closing, slow inactivation, and pathogenic dysfunction in a debilitating channelopathy. Future studies of nature's simplest sodium channels may continue to yield key insights into the fundamental molecular and chemical principles of their function and further elucidate the chemical basis of electrical signaling.
电信号对于生物学中的所有快速过程都是必不可少的,但它的分子机制尚不确定。本文综述了细菌钠离子通道的研究,目的是在不考虑哺乳动物钠离子通道中复杂的蛋白质相互作用和调节机制的情况下,深入了解跨膜离子电导和电压依赖性门控的基本分子和化学机制。这种极简主义的方法几乎可以在原子水平上完整地描述钠离子通道的功能,这些功能在哺乳动物钠离子通道中大多是保守的,包括钠离子的选择性和传导性、电压感应和激活、机械耦合到孔的打开和关闭、缓慢失活以及在一种使人虚弱的通道病中功能障碍。对自然界最简单的钠离子通道的进一步研究可能会继续为其功能的基本分子和化学原理提供关键的见解,并进一步阐明电信号的化学基础。