Department of Plant Biology, Michigan State University, East Lansing, MI 48824, USA.
Proc Natl Acad Sci U S A. 2009 Dec 22;106(51):22008-13. doi: 10.1073/pnas.0909090106. Epub 2009 Dec 3.
Distinctive nanoridges on the surface of flowers have puzzled plant biologists ever since their discovery over 75 years ago. Although postulated to help attract insect pollinators, the function, chemical nature, and ontogeny of these surface nanostructures remain uncertain. Studies have been hampered by the fact that no ridgeless mutants have been identified. Here, we describe two mutants lacking nanoridges and define the biosynthetic pathway for 10,16-dihydroxypalmitate, a major cutin monomer in nature. Using gene expression profiling, two candidates for the formation of floral cutin were identified in the model plant Arabidopsis thaliana: the glycerol-3-phosphate acyltransferase 6 (GPAT6) and a member of a cytochrome P450 family with unknown biological function (CYP77A6). Plants carrying null mutations in either gene produced petals with no nanoridges and no cuticle could be observed by either scanning or transmission electron microscopy. A strong reduction in cutin content was found in flowers of both mutants. In planta overexpression suggested GPAT6 preferentially uses palmitate derivatives in cutin synthesis. Comparison of cutin monomer profiles in knockouts for CYP77A6 and the fatty acid omega-hydroxylase CYP86A4 provided genetic evidence that CYP77A6 is an in-chain hydroxylase acting subsequently to CYP86A4 in the synthesis of 10,16-dihydroxypalmitate. Biochemical activity of CYP77A6 was demonstrated by production of dihydroxypalmitates from 16-hydroxypalmitate, using CYP77A6-expressing yeast microsomes. These results define the biosynthetic pathway for an abundant and widespread monomer of the cutin polyester, show that the morphology of floral surfaces depends on the synthesis of cutin, and identify target genes to investigate the function of nanoridges in flower biology.
自 75 多年前发现以来,花朵表面独特的纳米脊一直困扰着植物生物学家。尽管推测这些表面纳米结构有助于吸引昆虫传粉媒介,但它们的功能、化学性质和个体发生仍然不确定。研究受到这样一个事实的阻碍,即尚未确定无脊突突变体。在这里,我们描述了两种缺乏纳米脊的突变体,并定义了 10,16-二羟基棕榈酸的生物合成途径,10,16-二羟基棕榈酸是自然界中主要的角质单体。通过基因表达谱分析,在模式植物拟南芥中鉴定出形成花角质的两个候选基因:甘油-3-磷酸酰基转移酶 6(GPAT6)和一个具有未知生物学功能的细胞色素 P450 家族成员(CYP77A6)。在这两个基因中任一基因发生突变的植物,其花瓣都没有纳米脊,也无法通过扫描或透射电子显微镜观察到角质层。在这两个突变体的花朵中,发现角质层含量明显减少。在体内过表达表明,GPAT6 优先在角质合成中使用棕榈酸衍生物。CYP77A6 和脂肪酸 ω-羟化酶 CYP86A4 的敲除突变体的角质单体谱比较提供了遗传证据,表明 CYP77A6 是一种链内羟化酶,在 10,16-二羟基棕榈酸的合成中随后作用于 CYP86A4。通过使用表达 CYP77A6 的酵母微粒体从 16-羟基棕榈酸生产二羟基棕榈酸,证明了 CYP77A6 的生化活性。这些结果定义了角质聚酯中一种丰富且广泛存在的单体的生物合成途径,表明花表面的形态取决于角质的合成,并确定了目标基因,以研究纳米脊在花生物学中的功能。