Suppr超能文献

比例风险模型与阈值回归:它们的理论与实际联系

Proportional hazards and threshold regression: their theoretical and practical connections.

作者信息

Lee Mei-Ling Ting, Whitmore G A

机构信息

University of Maryland, College Park, MD, USA.

出版信息

Lifetime Data Anal. 2010 Apr;16(2):196-214. doi: 10.1007/s10985-009-9138-0. Epub 2009 Dec 4.

Abstract

Proportional hazards (PH) regression is a standard methodology for analyzing survival and time-to-event data. The proportional hazards assumption of PH regression, however, is not always appropriate. In addition, PH regression focuses mainly on hazard ratios and thus does not offer many insights into underlying determinants of survival. These limitations have led statistical researchers to explore alternative methodologies. Threshold regression (TR) is one of these alternative methodologies (see Lee and Whitmore, Stat Sci 21:501-513, 2006, for a review). The connection between PH regression and TR has been examined in previous published work but the investigations have been limited in scope. In this article, we study the connections between these two regression methodologies in greater depth and show that PH regression is, for most purposes, a special case of TR. We show two methods of construction by which TR models can yield PH functions for survival times, one based on altering the TR time scale and the other based on varying the TR boundary. We discuss how to estimate the TR time scale and boundary, with or without the PH assumption. A case demonstration is used to highlight the greater understanding of scientific foundations that TR can offer in comparison to PH regression. Finally, we discuss the potential benefits of positioning PH regression within the first-hitting-time context of TR regression.

摘要

比例风险(PH)回归是分析生存数据和事件发生时间数据的标准方法。然而,PH回归的比例风险假设并不总是合适的。此外,PH回归主要关注风险比,因此对生存的潜在决定因素没有提供太多见解。这些局限性促使统计研究人员探索替代方法。阈值回归(TR)就是这些替代方法之一(有关综述,请参阅Lee和Whitmore,《统计科学》21:501 - 513,2006年)。PH回归与TR之间的联系在以前发表的工作中已经进行了研究,但研究范围有限。在本文中,我们更深入地研究这两种回归方法之间的联系,并表明在大多数情况下,PH回归是TR的一个特例。我们展示了两种构建方法,通过这两种方法TR模型可以产生生存时间的PH函数,一种基于改变TR时间尺度,另一种基于改变TR边界。我们讨论了在有无PH假设的情况下如何估计TR时间尺度和边界。通过一个案例演示来突出与PH回归相比,TR能够提供对科学基础的更深入理解。最后,我们讨论了将PH回归置于TR回归的首次击中时间背景下的潜在益处。

相似文献

1
Proportional hazards and threshold regression: their theoretical and practical connections.
Lifetime Data Anal. 2010 Apr;16(2):196-214. doi: 10.1007/s10985-009-9138-0. Epub 2009 Dec 4.
2
Threshold regression for survival data with time-varying covariates.
Stat Med. 2010 Mar 30;29(7-8):896-905. doi: 10.1002/sim.3808.
3
Ornstein-Uhlenbeck threshold regression for time-to-event data with and without a cure fraction.
Lifetime Data Anal. 2015 Jan;21(1):1-19. doi: 10.1007/s10985-014-9306-8. Epub 2014 Aug 6.
5
Group sequential design for randomized trials using "first hitting time" model.
Stat Med. 2022 Jun 15;41(13):2375-2402. doi: 10.1002/sim.9360. Epub 2022 Mar 10.
8
Multi-parameter regression survival modeling: An alternative to proportional hazards.
Biometrics. 2017 Jun;73(2):678-686. doi: 10.1111/biom.12625. Epub 2016 Nov 28.
9
Review and implementation of cure models based on first hitting times for Wiener processes.
Lifetime Data Anal. 2009 Jun;15(2):147-76. doi: 10.1007/s10985-008-9108-y. Epub 2009 Jan 4.
10
Bayesian random-effects threshold regression with application to survival data with nonproportional hazards.
Biostatistics. 2010 Jan;11(1):111-26. doi: 10.1093/biostatistics/kxp041. Epub 2009 Oct 14.

引用本文的文献

3
A boosting first-hitting-time model for survival analysis in high-dimensional settings.
Lifetime Data Anal. 2023 Apr;29(2):420-440. doi: 10.1007/s10985-022-09553-9. Epub 2022 Apr 27.
4
Variable Selection in Threshold Regression Model with Applications to HIV Drug Adherence Data.
Stat Biosci. 2020 Dec;12(3):376-398. doi: 10.1007/s12561-020-09284-1. Epub 2020 Jun 17.
8
Constructing normalcy and discrepancy indexes for birth weight and gestational age using a threshold regression mixture model.
Biometrics. 2012 Mar;68(1):297-306. doi: 10.1111/j.1541-0420.2011.01648.x. Epub 2011 Aug 13.

本文引用的文献

1
Joint analysis of current status and marker data: an extension of a bivariate threshold model.
Int J Biostat. 2008 Oct 16;4(1):Article 21. doi: 10.2202/1557-4679.1122.
2
Threshold regression for survival data with time-varying covariates.
Stat Med. 2010 Mar 30;29(7-8):896-905. doi: 10.1002/sim.3808.
3
Bayesian random-effects threshold regression with application to survival data with nonproportional hazards.
Biostatistics. 2010 Jan;11(1):111-26. doi: 10.1093/biostatistics/kxp041. Epub 2009 Oct 14.
5
6
Review and implementation of cure models based on first hitting times for Wiener processes.
Lifetime Data Anal. 2009 Jun;15(2):147-76. doi: 10.1007/s10985-008-9108-y. Epub 2009 Jan 4.
8
Modeling low birth weights using threshold regression: results for U.S. birth data.
Lifetime Data Anal. 2007 Jun;13(2):161-90. doi: 10.1007/s10985-006-9032-y. Epub 2007 Feb 8.
9
Alternative time scales and failure time models.
Lifetime Data Anal. 2000 Jun;6(2):157-79. doi: 10.1023/a:1009616111968.
10
Multiple time scales in survival analysis.
Lifetime Data Anal. 1995;1(1):7-18. doi: 10.1007/BF00985253.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验