Suppr超能文献

阈值回归模型中的变量选择及其在HIV药物依从性数据中的应用

Variable Selection in Threshold Regression Model with Applications to HIV Drug Adherence Data.

作者信息

Saegusa Takumi, Ma Tianzhou, Li Gang, Chen Ying Qing, Lee Mei-Ling Ting

机构信息

Department of Biostatistics, University of Maryland, College Park MD 20742.

Department of Epidemiology and Biostatistics, University of Maryland, College Park MD 20742.

出版信息

Stat Biosci. 2020 Dec;12(3):376-398. doi: 10.1007/s12561-020-09284-1. Epub 2020 Jun 17.

Abstract

The threshold regression model is an effective alternative to the Cox proportional hazards regression model when the proportional hazards assumption is not met. This paper considers variable selection for threshold regression. This model has separate regression functions for the initial health status and the speed of degradation in health. This flexibility is an important advantage when considering relevant risk factors for a complex time-to-event model where one needs to decide which variables should be included in the regression function for the initial health status, in the function for the speed of degradation in health, or in both functions. In this paper, we extend the broken adaptive ridge (BAR) method, originally designed for variable selection for one regression function, to simultaneous variable selection for both regression functions needed in the threshold regression model. We establish variable selection consistency of the proposed method and asymptotic normality of the estimator of non-zero regression coefficients. Simulation results show that our method outperformed threshold regression without variable selection and variable selection based on the Akaike information criterion. We apply the proposed method to data from an HIV drug adherence study in which electronic monitoring of drug intake is used to identify risk factors for non- adherence.

摘要

当比例风险假设不成立时,阈值回归模型是Cox比例风险回归模型的一种有效替代方法。本文考虑阈值回归的变量选择。该模型对初始健康状况和健康状况恶化速度具有单独的回归函数。在考虑复杂的事件发生时间模型的相关风险因素时,这种灵活性是一个重要优势,在这种模型中,需要决定哪些变量应包含在初始健康状况的回归函数中、健康状况恶化速度的函数中,或者两个函数中。在本文中,我们将最初为一个回归函数的变量选择而设计的分段自适应岭(BAR)方法扩展到阈值回归模型所需的两个回归函数的同时变量选择。我们建立了所提出方法的变量选择一致性以及非零回归系数估计量的渐近正态性。模拟结果表明,我们的方法优于无变量选择的阈值回归以及基于赤池信息准则的变量选择。我们将所提出的方法应用于一项HIV药物依从性研究的数据,该研究使用药物摄入的电子监测来识别不依从的风险因素。

相似文献

1
Variable Selection in Threshold Regression Model with Applications to HIV Drug Adherence Data.
Stat Biosci. 2020 Dec;12(3):376-398. doi: 10.1007/s12561-020-09284-1. Epub 2020 Jun 17.
2
Simultaneous Estimation and Variable Selection for Interval-Censored Data with Broken Adaptive Ridge Regression.
J Am Stat Assoc. 2020;115(529):204-216. doi: 10.1080/01621459.2018.1537922. Epub 2019 Apr 22.
3
A regularized variable selection procedure in additive hazards model with stratified case-cohort design.
Lifetime Data Anal. 2018 Jul;24(3):443-463. doi: 10.1007/s10985-017-9402-7. Epub 2017 Jul 28.
4
Broken adaptive ridge regression and its asymptotic properties.
J Multivar Anal. 2018 Nov;168:334-351. doi: 10.1016/j.jmva.2018.08.007. Epub 2018 Aug 23.
5
Variable selection for case-cohort studies with failure time outcome.
Biometrika. 2016 Sep;103(3):547-562. doi: 10.1093/biomet/asw027. Epub 2016 Aug 10.
6
Model selection in multivariate adaptive regressions splines (MARS) using alternative information criteria.
Heliyon. 2023 Sep 17;9(9):e19964. doi: 10.1016/j.heliyon.2023.e19964. eCollection 2023 Sep.
7
Coupled variable selection for regression modeling of complex treatment patterns in a clinical cancer registry.
Stat Med. 2014 Dec 30;33(30):5358-70. doi: 10.1002/sim.6340. Epub 2014 Oct 27.
8
Proportional hazards model with a change point for clustered event data.
Biometrics. 2017 Sep;73(3):835-845. doi: 10.1111/biom.12655. Epub 2017 Mar 3.
10
Variable selection for multivariate failure time data.
Biometrika. 2005;92(2):303-316. doi: 10.1093/biomet/92.2.303.

引用本文的文献

1
Introduction to Special Issue on 'Statistical Methods for HIV/AIDS Research'.
Stat Biosci. 2020;12(3):263-266. doi: 10.1007/s12561-020-09296-x. Epub 2020 Oct 19.

本文引用的文献

1
Broken adaptive ridge regression and its asymptotic properties.
J Multivar Anal. 2018 Nov;168:334-351. doi: 10.1016/j.jmva.2018.08.007. Epub 2018 Aug 23.
4
Regularization Paths for Cox's Proportional Hazards Model via Coordinate Descent.
J Stat Softw. 2011 Mar;39(5):1-13. doi: 10.18637/jss.v039.i05.
5
An Adaptive Ridge Procedure for L0 Regularization.
PLoS One. 2016 Feb 5;11(2):e0148620. doi: 10.1371/journal.pone.0148620. eCollection 2016.
6
Sparse Multivariate Regression With Covariance Estimation.
J Comput Graph Stat. 2010 Fall;19(4):947-962. doi: 10.1198/jcgs.2010.09188.
8
A Selective Review of Group Selection in High-Dimensional Models.
Stat Sci. 2012;27(4). doi: 10.1214/12-STS392.
9
Large-scale parametric survival analysis.
Stat Med. 2013 Oct 15;32(23):3955-71. doi: 10.1002/sim.5817. Epub 2013 Apr 28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验