Suppr超能文献

开发并验证了一种简单易用的列线图,用于自我筛查血脂异常风险。

Development and validation of a simple-to-use nomogram for self-screening the risk of dyslipidemia.

机构信息

Martial Arts Academy, Wuhan Sports University, No. 461 Luoyu Rd., Hongshan District, Wuhan, 430079, Hubei, China.

Physical Examination Center, Renmin Hospital of Wuhan University, Wuhan, China.

出版信息

Sci Rep. 2023 Jun 6;13(1):9169. doi: 10.1038/s41598-023-36281-3.

Abstract

This study aimed to help healthy adults achieve self-screening by analyzing the quantitative relationship between body composition index measurements (BMI, waist-to-hip ratio, etc.) and dyslipidemia and establishing a logical risk prediction model for dyslipidemia. We performed a cross-sectional study and collected relevant data from 1115 adults between November 2019 and August 2020. The least absolute shrinkage selection operator (LASSO) regression analysis was performed to select the best predictor variables, and multivariate logistic regression analysis was used to construct the prediction model. In this study, a graphic tool including 10 predictor variables (a "nomogram," see the precise definition in the text) was constructed to predict the risk of dyslipidemia in healthy adults. A calibration diagram, receiver operating characteristic (ROC) curve, and decision curve analysis (DCA) were used to verify the model's utility. Our proposed dyslipidemia nomogram showed good discriminative ability with a C-index of 0.737 (95% confidence interval, 0.70-0.773). In the internal validation, a high C-index value of 0.718 was achieved. DCA showed a dyslipidemia threshold probability of 2-45%, proving the value of the nomogram for clinical application for dyslipidemia. This nomogram may be useful for self-screening the risk of dyslipidemia in healthy adults.

摘要

本研究旨在通过分析体成分指标(BMI、腰臀比等)与血脂异常的定量关系,建立血脂异常的逻辑风险预测模型,帮助健康成年人实现自我筛查。我们进行了一项横断面研究,于 2019 年 11 月至 2020 年 8 月期间收集了 1115 名成年人的相关数据。采用最小绝对收缩选择算子(LASSO)回归分析选择最佳预测变量,并采用多变量逻辑回归分析构建预测模型。在本研究中,构建了一个包含 10 个预测变量的图形工具(“列线图”,见文中的精确定义),用于预测健康成年人血脂异常的风险。通过校准图、接收者操作特征(ROC)曲线和决策曲线分析(DCA)验证模型的实用性。我们提出的血脂异常列线图具有良好的区分能力,C 指数为 0.737(95%置信区间,0.70-0.773)。内部验证中,C 指数值达到了 0.718。DCA 显示血脂异常阈值概率为 2-45%,证明了该列线图在血脂异常临床应用中的价值。该列线图可能有助于健康成年人自我筛查血脂异常的风险。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/466b/10244356/79b35aa014e6/41598_2023_36281_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验