James Graham Brown Cancer Center, University of Louisville, Louisville, Kentucky 40202, USA.
Biochemistry. 2010 Jan 12;49(1):179-94. doi: 10.1021/bi901357r.
Human telomeric DNA consists of tandem repeats of the DNA sequence d(GGGTTA). Oligodeoxynucleotide telomere models such as d[A(GGGTTA)(3)GGG] (Tel22) fold in a cation-dependent manner into quadruplex structures consisting of stacked G-quartets linked by d(TTA) loops. NMR has shown that in Na(+) solutions Tel22 forms a "basket" topology of four antiparallel strands; in contrast, Tel22 in K(+) solutions consists of a mixture of unknown topologies. Our previous studies on the mechanism of folding of Tel22 and similar telomere analogues utilized changes in UV absorption between 270 and 325 nm that report primarily on G-quartet formation and stacking showed that quadruplex formation occurs within milliseconds upon mixing with an appropriate cation. In this study, we assess the dynamics and equilibria of folding of specific loops by using Tel22 derivatives in which the dA residues were serially substituted with the fluorescent reporter base, 2-aminopurine (2-AP). Tel22 folding induced by Na(+) or K(+) assessed by changes in 2-AP fluorescence consists of at least three kinetic steps with time constants spanning a range from milliseconds to several hundred seconds. Na(+)-dependent equilibrium titrations of Tel22 folding could be approximated as a cooperative two-state process. In contrast, K(+)-dependent folding curves were biphasic, revealing that different conformational ensembles are present in 1 and 30 mM K(+). This conclusion was confirmed by (1)H NMR. Molecular dynamics simulations revealed a K(+) binding pocket in Tel22 located near dA1 that is specific for the so-called hybrid-1 conformation in which strand 1 is in a parallel arrangement. The possible presence of this topologically specific binding site suggests that K(+) may play an allosteric role in regulating telomere conformation and function by modulating quadruplex tertiary structure.
人类端粒 DNA 由 DNA 序列 d(GGGTTA)的串联重复组成。寡脱氧核苷酸端粒模型,如 d[A(GGGTTA)(3)GGG](Tel22),以阳离子依赖的方式折叠成由 G-四联体链接的 d(TTA)环组成的四联体结构。NMR 表明,在 Na(+)溶液中,Tel22 形成具有四个反平行链的“篮子”拓扑结构;相比之下,在 K(+)溶液中,Tel22 由未知拓扑结构的混合物组成。我们之前关于 Tel22 和类似端粒类似物折叠机制的研究利用了 270nm 至 325nm 之间的紫外吸收变化,该变化主要报告 G-四联体的形成和堆积,表明在与适当的阳离子混合后,四联体的形成在毫秒内发生。在这项研究中,我们通过使用端粒类似物的衍生物来评估特定环的折叠动力学和平衡,其中 dA 残基被荧光报告碱基 2-氨基嘌呤(2-AP)连续取代。通过 2-AP 荧光变化评估的由 Na(+)或 K(+)诱导的 Tel22 折叠包括至少三个动力学步骤,时间常数跨越从毫秒到数百秒的范围。可以将由 Na(+)依赖的 Tel22 折叠平衡滴定近似为协同的二态过程。相比之下,K(+)依赖的折叠曲线呈双相,表明在 1 和 30mM K(+)中存在不同的构象集合。这一结论通过 (1)H NMR 得到了证实。分子动力学模拟揭示了 Tel22 中位于 dA1 附近的 K(+)结合口袋,该口袋专门用于所谓的混合-1构象,其中链 1 呈平行排列。这种拓扑特异性结合位点的存在可能表明 K(+)通过调节四联体三级结构来调节端粒构象和功能,从而发挥别构作用。