Cadoni Enrico, Magalhães Pedro R, Emídio Rita M, Mendes Eduarda, Vítor Jorge, Carvalho Josué, Cruz Carla, Victor Bruno L, Paulo Alexandra
Faculty of Pharmacy, Research Institute for Medicines (iMed.ULisboa), Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal.
Faculty of Sciences, BioISI-Biosystems & Integrative Sciences Institute, University of Lisboa, Campo Grande, C8 bdg, 1749-016 Lisboa, Portugal.
Pharmaceuticals (Basel). 2021 Jul 13;14(7):669. doi: 10.3390/ph14070669.
G-quadruplex (G4)-interactive small molecules have a wide range of potential applications, not only as drugs, but also as sensors of quadruplex structures. The purpose of this work is the synthesis of analogues of the bis-methylquinolinium-pyridine-2,6-dicarboxamide G4 ligand 360A, to identify relevant structure-activity relationships to apply to the design of other G4-interactive small molecules bearing bis-quinoline or bis-isoquinoline moieties. Thermal denaturation experiments revealed that non-methylated derivatives with a relative 1,4 position between the amide linker and the nitrogen of the quinoline ring are moderate G4 stabilizers, with a preference for the hybrid h-Telo G4, a 21-nt sequence present in human telomeres. Insertion of a positive charge upon methylation of quinoline/isoquinoline nitrogen increases compounds' ability to selectively stabilize G4s compared to duplex DNA, with a preference for parallel structures. Among these, compounds having a relative 1,3-position between the charged methylquinolinium/isoquinolinium nitrogen and the amide linker are the best G4 stabilizers. More interestingly, these ligands showed different capacities to selectively block DNA polymerization in a PCR-stop assay and to induce G4 conformation switches of hybrid h-Telo G4. Molecular dynamic simulations with the parallel G4 formed by a 21-nt sequence present in gene promoter, showed that the relative spatial orientation of the two methylated quinoline/isoquinoline rings determines the ligands mode and strength of binding to G4s.
G-四链体(G4)相互作用小分子具有广泛的潜在应用,不仅可作为药物,还可作为四链体结构的传感器。这项工作的目的是合成双甲基喹啉鎓-吡啶-2,6-二甲酰胺G4配体360A的类似物,以确定相关的构效关系,用于设计其他带有双喹啉或双异喹啉部分的G4相互作用小分子。热变性实验表明,酰胺连接基与喹啉环氮之间相对位置为1,4的非甲基化衍生物是中等强度的G4稳定剂,对人端粒中存在的21个核苷酸序列的杂合h-Telo G4具有偏好性。与双链DNA相比,喹啉/异喹啉氮甲基化后引入正电荷可增强化合物选择性稳定G4的能力,且对平行结构具有偏好性。其中,带电荷的甲基喹啉鎓/异喹啉鎓氮与酰胺连接基之间相对位置为1,3的化合物是最佳的G4稳定剂。更有趣的是,在PCR终止试验中,这些配体表现出不同的选择性阻断DNA聚合的能力,以及诱导杂合h-Telo G4的G4构象转换的能力。对由基因启动子中存在的21个核苷酸序列形成的平行G4进行分子动力学模拟表明,两个甲基化喹啉/异喹啉环的相对空间取向决定了配体与G4结合的模式和强度。