Suppr超能文献

渗透溶质诱导的水合层水分子氢键的扰动:与蛋白质构象变化的相关性。

Osmolyte-induced perturbations of hydrogen bonding between hydration layer waters: correlation with protein conformational changes.

机构信息

Department of Biophysics and Physiology, Albert Einstein College of Medicine, 1300 Morris Park Ave., Bronx, New York 10461, USA.

出版信息

J Phys Chem B. 2009 Dec 31;113(52):16632-42. doi: 10.1021/jp9072284.

Abstract

Gadolinium vibronic sideband luminescence spectroscopy (GVSBLS) is used to probe osmolyte-induced changes in the hydrogen bond strength between first and second shell waters on the surface of free Gd(3+) and Gd(3+) coordinated to EDTA and to structured calcium binding peptides in solution. In parallel, Raman is used to probe the corresponding impact of the same set of osmolytes on hydrogen bonding among waters in the bulk phase. Increasing concentration of added urea is observed to progressively weaken the hydrogen bonding within the hydration layer but has minimal observed impact on bulk water. In contrast, polyols are observed to enhance hydrogen bonding in both the hydration layer and the bulk with the amplitude being polyol dependent with trehalose being more effective than sucrose, glucose, or glycerol. The observed patterns indicate that the size and properties of the osmolyte as well as the local architecture of the specific surface site of hydration impact preferential exclusion effects and local hydrogen bond strength. Correlation of the vibronic spectra with CD measurements on the peptides as a function of added osmolytes shows an increase in secondary structure with added polyols and that the progressive weakening of the hydrogen bonding upon addition of urea first increases water occupancy within the peptide and only subsequently does the peptide unfold. The results support models in which the initial steps in the unfolding process involve osmolyte-induced enhancement of water occupancy within the interior of the protein.

摘要

镝振动边带发光光谱(GVSBLS)用于探测渗透剂诱导的自由镝(Gd(3+))和与 EDTA 配位的 Gd(3+)表面第一层和第二层水之间氢键强度的变化,以及溶液中结构化钙结合肽的变化。同时,拉曼用于探测同一组渗透剂对体相水中氢键的相应影响。观察到添加的尿素浓度增加会逐渐削弱水合层内的氢键,但对体相水的影响最小。相比之下,多元醇被观察到增强水合层和体相中的氢键,其幅度与多元醇有关,其中海藻糖比蔗糖、葡萄糖或甘油更有效。观察到的模式表明,渗透剂的大小和性质以及特定水合表面位点的局部结构会影响优先排斥效应和局部氢键强度。随着添加的渗透剂,将振动光谱与肽的 CD 测量相关联,表明添加多元醇会增加二级结构,而随着添加尿素导致氢键逐渐减弱,首先会增加肽内的水占有率,然后肽才会展开。这些结果支持了这样的模型,即展开过程的初始步骤涉及渗透剂诱导的蛋白质内部水占有率的增强。

相似文献

2
Charge density-dependent modifications of hydration shell waters by Hofmeister ions.
J Am Chem Soc. 2009 Aug 12;131(31):11010-8. doi: 10.1021/ja902240j.
3
4
Investigating the Counteracting Effect of Trehalose on Urea-Induced Protein Denaturation Using Molecular Dynamics Simulation.
J Phys Chem B. 2015 Aug 27;119(34):10975-88. doi: 10.1021/acs.jpcb.5b01457. Epub 2015 Jul 16.
7
Structural properties of hydration shell around various conformations of simple polypeptides.
J Phys Chem B. 2010 Apr 8;114(13):4536-50. doi: 10.1021/jp9086199.
10
Exploring the Counteracting Mechanism of Trehalose on Urea Conferred Protein Denaturation: A Molecular Dynamics Simulation Study.
J Phys Chem B. 2015 Jul 30;119(30):9820-34. doi: 10.1021/acs.jpcb.5b01576. Epub 2015 Jul 9.

引用本文的文献

1
Bacterial osmoprotectants-a way to survive in saline conditions and potential crop allies.
FEMS Microbiol Rev. 2025 Jan 14;49. doi: 10.1093/femsre/fuaf020.
2
Mechanism of Osmolyte Stabilization-Destabilization of Proteins: Experimental Evidence.
J Phys Chem B. 2022 Apr 28;126(16):2990-2999. doi: 10.1021/acs.jpcb.2c00281. Epub 2022 Apr 20.
4
Biophysical Elucidation of Fibrillation Inhibition by Sugar Osmolytes in α-Lactalbumin: Multispectroscopic and Molecular Docking Approaches.
ACS Omega. 2020 Oct 8;5(41):26871-26882. doi: 10.1021/acsomega.0c04062. eCollection 2020 Oct 20.
5
Selective inhibition of aggregation/fibrillation of bovine serum albumin by osmolytes: Mechanistic and energetics insights.
PLoS One. 2017 Feb 16;12(2):e0172208. doi: 10.1371/journal.pone.0172208. eCollection 2017.
9
Structure and dynamics of urea/water mixtures investigated by vibrational spectroscopy and molecular dynamics simulation.
J Phys Chem B. 2013 Oct 24;117(42):13291-300. doi: 10.1021/jp4037217. Epub 2013 Jul 25.
10
Solute's perspective on how trimethylamine oxide, urea, and guanidine hydrochloride affect water's hydrogen bonding ability.
J Phys Chem B. 2012 Oct 18;116(41):12473-8. doi: 10.1021/jp307414s. Epub 2012 Oct 9.

本文引用的文献

1
Charge density-dependent modifications of hydration shell waters by Hofmeister ions.
J Am Chem Soc. 2009 Aug 12;131(31):11010-8. doi: 10.1021/ja902240j.
2
Combined electrostatics and hydrogen bonding determine intermolecular interactions between polyphosphoinositides.
J Am Chem Soc. 2008 Jul 16;130(28):9025-30. doi: 10.1021/ja800948c. Epub 2008 Jun 24.
3
Conformational dependence of hemoglobin reactivity under high viscosity conditions: the role of solvent slaved dynamics.
J Am Chem Soc. 2007 Oct 24;129(42):12756-64. doi: 10.1021/ja072342b. Epub 2007 Oct 2.
4
Effects of cell volume regulating osmolytes on glycerol 3-phosphate binding to triosephosphate isomerase.
Biochemistry. 2007 Sep 4;46(35):10055-62. doi: 10.1021/bi700990d. Epub 2007 Aug 15.
5
Ligand recombination and a hierarchy of solvent slaved dynamics: the origin of kinetic phases in hemeproteins.
Gene. 2007 Aug 15;398(1-2):234-48. doi: 10.1016/j.gene.2007.04.032. Epub 2007 May 10.
6
Aqueous urea solutions: structure, energetics, and urea aggregation.
J Phys Chem B. 2007 Jun 7;111(22):6220-8. doi: 10.1021/jp066474n. Epub 2007 May 11.
7
Structure and interaction in aqueous urea-trimethylamine-N-oxide solutions.
J Am Chem Soc. 2007 Apr 11;129(14):4476-82. doi: 10.1021/ja0685506. Epub 2007 Mar 21.
9
10
Protein folding is slaved to solvent motions.
Proc Natl Acad Sci U S A. 2006 Oct 17;103(42):15469-72. doi: 10.1073/pnas.0607168103. Epub 2006 Oct 9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验