Suppr超能文献

使用小波变换-简易滤波器检测第三心音。

Third heart sound detection using wavelet transform-simplicity filter.

作者信息

Kumar D, Carvalho P, Antunes M, Henriques J, Sá e Melo A, Schmidt R, Habetha J

机构信息

Centre for Informatics and Systems, University of Coimbra, Portugal.

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2007;2007:1277-81. doi: 10.1109/IEMBS.2007.4352530.

Abstract

Heart failure and heart valvar diseases are chronic heart disorders which are potentially diagnosed using heart sound characteristics. Heart sound components S1 and S2 exhibit significant characteristics for valvar dysfunction while pathological S3 sound is a prominent sign for heart failure in elderly people. In this paper, a new automatic detection method of the S3 heart sound is proposed. The method is build upon wavelet transform-simplicity filter which separates S1, S2 and S3 sounds from background noise enabling heart sound segmentation even in the presence of heart murmurs or noise sources. The algorithm uses physiologically inspired criteria to assess the presence of S3 heart sound components and to perform their segmentation. Heart sound samples recorded from children as well as from elderly patients with heart failure were used to test the method. The achieved sensitivity and specificity were 90.35% and 92.35%, respectively.

摘要

心力衰竭和心脏瓣膜疾病是慢性心脏疾病,可通过心音特征进行潜在诊断。心音成分S1和S2对瓣膜功能障碍具有显著特征,而病理性S3音是老年人心力衰竭的突出体征。本文提出了一种新的S3心音自动检测方法。该方法基于小波变换-简易滤波器构建,可将S1、S2和S3音与背景噪声分离,即使存在心脏杂音或噪声源也能实现心音分割。该算法使用生理学启发的标准来评估S3心音成分的存在并进行分割。使用从儿童以及患有心力衰竭的老年患者记录的心音样本对该方法进行测试。所获得的灵敏度和特异性分别为90.35%和92.35%。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验