Suppr超能文献

通过随机共振范式,通道噪声增强了声学神经元模型中的信号可检测性。

Channel noise enhances signal detectability in a model of acoustic neuron through the stochastic resonance paradigm.

作者信息

Liberti M, Paffi A, Maggio F, De Angelis A, Apollonio F, d'Inzeo G

机构信息

Department of Electronic Engineering, Univeristy of Rome ¿La Sapienza¿, 00184 Rome, Italy.

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2009;2009:1525-8. doi: 10.1109/IEMBS.2009.5333070.

Abstract

A number of experimental investigations have evidenced the extraordinary sensitivity of neuronal cells to weak input stimulations, including electromagnetic (EM) fields. Moreover, it has been shown that biological noise, due to random channels gating, acts as a tuning factor in neuronal processing, according to the stochastic resonant (SR) paradigm. In this work the attention is focused on noise arising from the stochastic gating of ionic channels in a model of Ranvier node of acoustic fibers. The small number of channels gives rise to a high noise level, which is able to cause a spike train generation even in the absence of stimulations. A SR behavior has been observed in the model for the detection of sinusoidal signals at frequencies typical of the speech.

摘要

大量实验研究已证明神经元细胞对包括电磁场(EM)在内的微弱输入刺激具有非凡的敏感性。此外,研究表明,根据随机共振(SR)范式,由于随机通道门控产生的生物噪声在神经元处理过程中充当调谐因子。在这项工作中,注意力集中在声纤维郎飞结模型中离子通道随机门控产生的噪声上。少量的通道会产生高噪声水平,即使在没有刺激的情况下也能导致尖峰序列的产生。在该模型中观察到了SR行为,用于检测语音典型频率的正弦信号。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验