Suppr超能文献

用于机器人神经外科手术的形状记忆合金(SMA)致动器的特性分析

Characterization of SMA actuator for applications in robotic neurosurgery.

作者信息

Ho Mingyen, Desai Jaydev P

机构信息

Robotics, Automation, Manipulation, and Sensing (RAMS) Laboratory, University of Maryland, College Park, MD, USA.

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2009;2009:6856-9. doi: 10.1109/IEMBS.2009.5333118.

Abstract

Shape memory alloy has been proven to be MRI compatible and due to its unique microstructure and molecular characteristics, it possesses many unique properties. Additionally, internal resistive heating of the wires eliminates the need for bulky external heating mechanisms. These advantages make SMA actuators good candidates for a wide range of applications in robotic surgical systems when compared to conventional actuators. In this paper, we present our preliminary work towards the development of a SMA based miniature robot for neurosurgery which can be operated under MRI. In this robot, we use two antagonistic SMA wires as actuators for each joint, so that each joint can be operated separately. We also designed an experimental setup to test the SMA wires. The goal of this experiment is to develop a systematic test especially for this robot and to collect sufficient data to estimate the performance of the robot. This setup can also be used to test SMA wires themselves. The data from this experiment will be used to determine important material parameters that are required for analytical models, and then use those models to develop a control strategy to manipulate the SMA actuators.

摘要

形状记忆合金已被证明与磁共振成像兼容,并且由于其独特的微观结构和分子特性,它具有许多独特的性能。此外,导线的内部电阻加热消除了对庞大外部加热机制的需求。与传统致动器相比,这些优点使形状记忆合金致动器成为机器人手术系统中广泛应用的理想选择。在本文中,我们展示了我们在开发一种基于形状记忆合金的用于神经外科手术的微型机器人方面的初步工作,该机器人可以在磁共振成像下操作。在这个机器人中,我们为每个关节使用两根拮抗的形状记忆合金丝作为致动器,以便每个关节可以单独操作。我们还设计了一个实验装置来测试形状记忆合金丝。这个实验的目标是开发一种专门针对这个机器人的系统测试,并收集足够的数据来估计机器人的性能。这个装置也可以用来测试形状记忆合金丝本身。这个实验的数据将用于确定分析模型所需的重要材料参数,然后使用这些模型来开发一种控制策略来操纵形状记忆合金致动器。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验