Suppr超能文献

基于床传感器的睡眠宏观结构自动检测

Automatic detection of sleep macrostructure based on bed sensors.

作者信息

Mendez M O, Matteucci M, Cerutti S, Bianchi A M, Kortelainen Juha M

机构信息

The Politecnico di Milano, Milan, Italy.

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2009;2009:5555-8. doi: 10.1109/IEMBS.2009.5333734.

Abstract

This study analyses the spectral components of the heart rate fluctuations of a new contact-less technology for sleep evaluation. Both heart beat interval (HBI) and movement activity were extracted from the multichannel ballistocardiographic (BCG) measurements, based on Emfit sensor foils placed into bed mattress. Powers spectral densities (PSD) of HBI have been compared with the ones obtained from the standard ECG during sleep stage 2. In addition, spectral features obtained from the contact-less technology and standard ECG has been used to automatically classify the sleep macrostructure through a time-varying autoregressive model and a Hidden Markov Model. Whole night recordings from six subjects were analyzed in this study. Spectral components did not show significant differences between the two measurements. Further, contactless technology achieved a total accuracy of 83 % and kappa index of 0.42, while standard ECG achieved an accuracy of 84 % and kappa index of 0.43 when compared to clinical sleep staging from polysomnography.

摘要

本研究分析了一种用于睡眠评估的新型非接触技术的心率波动频谱成分。基于放置在床垫中的Emfit感应箔片,从多通道心冲击图(BCG)测量中提取心跳间隔(HBI)和运动活动。已将HBI的功率谱密度(PSD)与在睡眠2期从标准心电图获得的功率谱密度进行比较。此外,从非接触技术和标准心电图获得的频谱特征已用于通过时变自回归模型和隐马尔可夫模型自动分类睡眠宏观结构。本研究分析了6名受试者的整夜记录。两种测量之间的频谱成分没有显示出显著差异。此外,与多导睡眠图的临床睡眠分期相比,非接触技术的总准确率为83%,kappa指数为0.42,而标准心电图的准确率为84%,kappa指数为0.43。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验