Suppr超能文献

基于图割法的扩散张量图像分割实验评估

An experimental evaluation of diffusion tensor image segmentation using graph-cuts.

作者信息

Han Deok, Singh Vikas, Lee Jee Eun, Zakszewski Elizabeth, Adluru Nagesh, Oakes Terrance R, Alexander Andrew

机构信息

Waisman Laboratory for Brain Imaging and Behavior, University of Wisconsin-Madison, WI, USA.

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2009;2009:5653-6. doi: 10.1109/IEMBS.2009.5333767.

Abstract

The segmentation of diffusion tensor imaging (DTI) data is a challenging problem due to the high variation and overlap of the distributions induced by individual DTI measures (e.g., fractional anisotropy). Accurate tissue segmentation from DTI data is important for characterizing the mi-crostructural properties of white matter (WM) in a subsequent analysis. This step may also be useful for generating a mask to constrain the results of WM tractography. In this study, a graph-cuts segmentation method was applied to the problem of extracting WM, gray matter (GM) and cerebral spinal fluid (CSF) from brain DTI data. A two-phase segmentation method was adopted by first segmenting CSF signal from the DTI data using the third eigenvalue (lambda(3)) maps, and then extracting WM regions from the fractional anisotropy (FA) maps. The algorithm was evaluated on ten real DTI data sets obtained from in vivo human brains and the results were compared against manual segmentation by an expert. Overall, the graph cuts method performed well, giving an average segmentation accuracy of about 0.90, 0.77 and 0.88 for WM, GM and CSF respectively in terms of volume overlap(VO).

摘要

由于个体扩散张量成像(DTI)测量值(例如,分数各向异性)所导致的分布具有高度变异性和重叠性,DTI数据的分割是一个具有挑战性的问题。从DTI数据中准确进行组织分割对于在后续分析中表征白质(WM)的微观结构特性非常重要。这一步骤对于生成一个掩码以约束WM纤维束成像的结果也可能有用。在本研究中,一种图割分割方法被应用于从脑部DTI数据中提取WM、灰质(GM)和脑脊液(CSF)的问题。采用了一种两阶段分割方法,首先使用第三特征值(λ(3))图从DTI数据中分割出CSF信号,然后从分数各向异性(FA)图中提取WM区域。该算法在从活体人类大脑获得的十个真实DTI数据集上进行了评估,并将结果与专家的手动分割进行了比较。总体而言,图割方法表现良好,就体积重叠(VO)而言,WM、GM和CSF的平均分割准确率分别约为0.90、0.77和0.88。

相似文献

2
Brain tissue segmentation based on DTI data.基于扩散张量成像(DTI)数据的脑组织分割
Neuroimage. 2007 Oct 15;38(1):114-23. doi: 10.1016/j.neuroimage.2007.07.002. Epub 2007 Jul 13.
3
DTI segmentation by statistical surface evolution.基于统计曲面演化的扩散张量成像分割
IEEE Trans Med Imaging. 2006 Jun;25(6):685-700. doi: 10.1109/tmi.2006.873299.
4
Tractometer: towards validation of tractography pipelines.束径仪:用于追踪技术管道的验证。
Med Image Anal. 2013 Oct;17(7):844-57. doi: 10.1016/j.media.2013.03.009. Epub 2013 Apr 25.
5
Belief propagation based segmentation of white matter tracts in DTI.基于信念传播的扩散张量成像中白质纤维束分割
Med Image Comput Comput Assist Interv. 2009;12(Pt 1):943-50. doi: 10.1007/978-3-642-04268-3_116.
7
Mixtures of Gaussians on tensor fields for DT-MRI segmentation.用于扩散张量磁共振成像分割的张量场上的高斯混合模型
Med Image Comput Comput Assist Interv. 2007;10(Pt 1):319-26. doi: 10.1007/978-3-540-75757-3_39.

引用本文的文献

1
DTI BASED STRUCTURAL DAMAGE CHARACTERIZATION FOR DISORDERS OF CONSCIOUSNESS.基于扩散张量成像的意识障碍结构性损伤特征分析
Proc Int Conf Image Proc. 2012 Sep-Oct;2012:1257-1260. doi: 10.1109/ICIP.2012.6467095. Epub 2013 Feb 21.

本文引用的文献

1
Brain tissue segmentation based on DTI data.基于扩散张量成像(DTI)数据的脑组织分割
Neuroimage. 2007 Oct 15;38(1):114-23. doi: 10.1016/j.neuroimage.2007.07.002. Epub 2007 Jul 13.
3
Diffusion tensor imaging of the corpus callosum in Autism.自闭症患者胼胝体的扩散张量成像
Neuroimage. 2007 Jan 1;34(1):61-73. doi: 10.1016/j.neuroimage.2006.08.032. Epub 2006 Oct 4.
5
76-space analysis of grey matter diffusivity: methods and applications.灰质扩散率的76维空间分析:方法与应用
Neuroimage. 2006 May 15;31(1):51-65. doi: 10.1016/j.neuroimage.2005.11.041. Epub 2006 Jan 23.
8
What energy functions can be minimized via graph cuts?通过图割可以最小化哪些能量函数?
IEEE Trans Pattern Anal Mach Intell. 2004 Feb;26(2):147-59. doi: 10.1109/TPAMI.2004.1262177.
9
Diffusion tensor imaging of the brain: review of clinical applications.大脑的扩散张量成像:临床应用综述
Neuroradiology. 2004 May;46(5):339-50. doi: 10.1007/s00234-003-1114-x. Epub 2004 Apr 21.
10
Basic principles of diffusion-weighted imaging.扩散加权成像的基本原理。
Eur J Radiol. 2003 Mar;45(3):169-84. doi: 10.1016/s0720-048x(02)00303-0.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验