Suppr超能文献

脑机接口中电极通道的优化

Optimization of electrode channels in Brain Computer Interfaces.

作者信息

Kamrunnahar M, Dias N S, Schiff S J

机构信息

Center for Neural Engineering, Dept. of Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA 16802, USA.

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2009;2009:6477-80. doi: 10.1109/IEMBS.2009.5333585.

Abstract

What is the optimal number of electrodes one can use in discrimination of tasks for a Brain Computer Interface (BCI)? To address this question, the number and location of scalp electrodes in the acquisition of human electroencephalography (EEG) and discrimination of motor imagery tasks were optimized by using a systematic optimization approach. The systematic analysis results in the most reliable procedure in electrode optimization as well as a validating means for the other feature selection techniques. We acquired human scalp EEG in response to cue-based motor imagery tasks. We employed a systematic analysis by using all possible combinations of the channels and calculating task discrimination errors for each of these combinations by using linear discriminant analysis (LDA) for feature classification. Channel combination that resulted in the smallest discrimination error was selected as the optimum number of channels to be used in BCI applications. Results from the systematic analysis were compared with another feature selection algorithm: forward stepwise feature selection combined with LDA feature classification. Our results demonstrate the usefulness of the fully optimized technique for a reliable selection of scalp electrodes in BCI applications.

摘要

对于脑机接口(BCI)的任务识别而言,能够使用的最佳电极数量是多少?为解决这个问题,通过采用系统优化方法,对采集人类脑电图(EEG)时头皮电极的数量和位置以及运动想象任务的识别进行了优化。系统分析得出了电极优化中最可靠的程序以及用于其他特征选择技术的验证方法。我们采集了人类头皮EEG以响应基于提示的运动想象任务。我们通过使用通道的所有可能组合进行系统分析,并通过使用线性判别分析(LDA)进行特征分类来计算这些组合中每一个的任务识别误差。导致最小识别误差的通道组合被选为BCI应用中要使用的最佳通道数量。将系统分析的结果与另一种特征选择算法进行比较:前向逐步特征选择与LDA特征分类相结合。我们的结果证明了完全优化技术在BCI应用中可靠选择头皮电极的有用性。

相似文献

1
Optimization of electrode channels in Brain Computer Interfaces.
Annu Int Conf IEEE Eng Med Biol Soc. 2009;2009:6477-80. doi: 10.1109/IEMBS.2009.5333585.
2
Estimation of optimal location of EEG reference electrode for motor imagery based BCI using fMRI.
Conf Proc IEEE Eng Med Biol Soc. 2006;2006:1193-6. doi: 10.1109/IEMBS.2006.260270.
3
Time sparsification of EEG signals in motor-imagery based brain computer interfaces.
Annu Int Conf IEEE Eng Med Biol Soc. 2012;2012:4271-4. doi: 10.1109/EMBC.2012.6346910.
4
Continuous detection of motor imagery in a four-class asynchronous BCI.
Annu Int Conf IEEE Eng Med Biol Soc. 2007;2007:3241-4. doi: 10.1109/IEMBS.2007.4353020.
5
Bipolar electrode selection for a motor imagery based brain-computer interface.
J Neural Eng. 2008 Sep;5(3):342-9. doi: 10.1088/1741-2560/5/3/007. Epub 2008 Aug 28.
6
The use of EEG modifications due to motor imagery for brain-computer interfaces.
IEEE Trans Neural Syst Rehabil Eng. 2003 Jun;11(2):131-3. doi: 10.1109/TNSRE.2003.814455.
7
Classification of single trial motor imagery EEG recordings with subject adapted non-dyadic arbitrary time-frequency tilings.
J Neural Eng. 2006 Sep;3(3):235-44. doi: 10.1088/1741-2560/3/3/006. Epub 2006 Jul 20.
8
Channel selection by genetic algorithms for classifying single-trial ECoG during motor imagery.
Annu Int Conf IEEE Eng Med Biol Soc. 2008;2008:624-7. doi: 10.1109/IEMBS.2008.4649230.
9
Effect of feature and channel selection on EEG classification.
Conf Proc IEEE Eng Med Biol Soc. 2006;2006:2171-4. doi: 10.1109/IEMBS.2006.259833.
10
Motor imagery EEG discrimination using the correlation of wavelet features.
Clin EEG Neurosci. 2015 Apr;46(2):94-9. doi: 10.1177/1550059413514974. Epub 2014 Mar 5.

引用本文的文献

1
EEG channel selection based on sequential backward floating search for motor imagery classification.
Front Neurosci. 2022 Oct 21;16:1045851. doi: 10.3389/fnins.2022.1045851. eCollection 2022.
2
Miniaturization for wearable EEG systems: recording hardware and data processing.
Biomed Eng Lett. 2022 Jun 6;12(3):239-250. doi: 10.1007/s13534-022-00232-0. eCollection 2022 Aug.

本文引用的文献

1
Dimensionality reduction and channel selection of motor imagery electroencephalographic data.
Comput Intell Neurosci. 2009;2009:537504. doi: 10.1155/2009/537504. Epub 2009 Jun 8.
2
Model-based responses and features in Brain Computer Interfaces.
Annu Int Conf IEEE Eng Med Biol Soc. 2008;2008:4482-5. doi: 10.1109/IEMBS.2008.4650208.
3
Bipolar electrode selection for a motor imagery based brain-computer interface.
J Neural Eng. 2008 Sep;5(3):342-9. doi: 10.1088/1741-2560/5/3/007. Epub 2008 Aug 28.
4
Fully optimized discrimination of physiological responses to auditory stimuli.
J Neural Eng. 2008 Jun;5(2):133-43. doi: 10.1088/1741-2560/5/2/004. Epub 2008 Apr 22.
5
Emulation of computer mouse control with a noninvasive brain-computer interface.
J Neural Eng. 2008 Jun;5(2):101-10. doi: 10.1088/1741-2560/5/2/001. Epub 2008 Mar 5.
6
Two-dimensional movement control using electrocorticographic signals in humans.
J Neural Eng. 2008 Mar;5(1):75-84. doi: 10.1088/1741-2560/5/1/008. Epub 2008 Feb 1.
7
Synchronous neural interactions assessed by magnetoencephalography: a functional biomarker for brain disorders.
J Neural Eng. 2007 Dec;4(4):349-55. doi: 10.1088/1741-2560/4/4/001. Epub 2007 Aug 27.
8
Comparison of EEG pattern classification methods for brain-computer interfaces.
Annu Int Conf IEEE Eng Med Biol Soc. 2007;2007:2540-3. doi: 10.1109/IEMBS.2007.4352846.
9
Combining spatial filters for the classification of single-trial EEG in a finger movement task.
IEEE Trans Biomed Eng. 2007 May;54(5):821-31. doi: 10.1109/TBME.2006.889206.
10
Brain-computer interfaces as new brain output pathways.
J Physiol. 2007 Mar 15;579(Pt 3):613-9. doi: 10.1113/jphysiol.2006.125948. Epub 2007 Jan 25.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验