Suppr超能文献

利用非侵入式脑机接口模拟计算机鼠标控制

Emulation of computer mouse control with a noninvasive brain-computer interface.

作者信息

McFarland Dennis J, Krusienski Dean J, Sarnacki William A, Wolpaw Jonathan R

机构信息

Laboratory of Nervous System Disorders, Wadsworth Center, New York State Department of Health and State University of New York, Albany, NY 12201, USA.

出版信息

J Neural Eng. 2008 Jun;5(2):101-10. doi: 10.1088/1741-2560/5/2/001. Epub 2008 Mar 5.

Abstract

Brain-computer interface (BCI) technology can provide nonmuscular communication and control to people who are severely paralyzed. BCIs can use noninvasive or invasive techniques for recording the brain signals that convey the user's commands. Although noninvasive BCIs are used for simple applications, it has frequently been assumed that only invasive BCIs, which use electrodes implanted in the brain, will be able to provide multidimensional sequential control of a robotic arm or a neuroprosthesis. The present study shows that a noninvasive BCI using scalp-recorded electroencephalographic (EEG) activity and an adaptive algorithm can provide people, including people with spinal cord injuries, with two-dimensional cursor movement and target selection. Multiple targets were presented around the periphery of a computer screen, with one designated as the correct target. The user's task was to use EEG to move a cursor from the center of the screen to the correct target and then to use an additional EEG feature to select the target. If the cursor reached an incorrect target, the user was instructed not to select it. Thus, this task emulated the key features of mouse operation. The results indicate that people with severe motor disabilities could use brain signals for sequential multidimensional movement and selection.

摘要

脑机接口(BCI)技术能够为严重瘫痪者提供非肌肉方式的通信与控制。BCI可采用非侵入性或侵入性技术来记录传达用户指令的脑信号。尽管非侵入性BCI用于简单应用,但人们常常认为只有使用植入大脑电极的侵入性BCI才能对机械臂或神经假体进行多维顺序控制。本研究表明,一种利用头皮记录的脑电图(EEG)活动和自适应算法的非侵入性BCI能够为包括脊髓损伤患者在内的人群提供二维光标移动和目标选择功能。在电脑屏幕周边呈现多个目标,其中一个被指定为正确目标。用户的任务是利用脑电图将光标从屏幕中心移至正确目标,然后使用额外的脑电图特征来选择目标。如果光标到达错误目标,用户会被指示不要选择它。因此,该任务模拟了鼠标操作的关键特征。结果表明,严重运动功能障碍者能够利用脑信号进行顺序多维运动和选择。

相似文献

1
Emulation of computer mouse control with a noninvasive brain-computer interface.
J Neural Eng. 2008 Jun;5(2):101-10. doi: 10.1088/1741-2560/5/2/001. Epub 2008 Mar 5.
2
Control of a two-dimensional movement signal by a noninvasive brain-computer interface in humans.
Proc Natl Acad Sci U S A. 2004 Dec 21;101(51):17849-54. doi: 10.1073/pnas.0403504101. Epub 2004 Dec 7.
3
Electroencephalographic (EEG) control of three-dimensional movement.
J Neural Eng. 2010 Jun;7(3):036007. doi: 10.1088/1741-2560/7/3/036007. Epub 2010 May 11.
4
Brain-computer interfaces for communication and control.
Clin Neurophysiol. 2002 Jun;113(6):767-91. doi: 10.1016/s1388-2457(02)00057-3.
5
Sensorimotor rhythm-based brain-computer interface (BCI): feature selection by regression improves performance.
IEEE Trans Neural Syst Rehabil Eng. 2005 Sep;13(3):372-9. doi: 10.1109/TNSRE.2005.848627.
6
Conversion of EEG activity into cursor movement by a brain-computer interface (BCI).
IEEE Trans Neural Syst Rehabil Eng. 2004 Sep;12(3):331-8. doi: 10.1109/TNSRE.2004.834627.
7
Target selection with hybrid feature for BCI-based 2-D cursor control.
IEEE Trans Biomed Eng. 2012 Jan;59(1):132-40. doi: 10.1109/TBME.2011.2167718. Epub 2011 Sep 15.
8
High-resolution EEG techniques for brain-computer interface applications.
J Neurosci Methods. 2008 Jan 15;167(1):31-42. doi: 10.1016/j.jneumeth.2007.06.031. Epub 2007 Jul 10.
9
Non-invasive brain-computer interface system: towards its application as assistive technology.
Brain Res Bull. 2008 Apr 15;75(6):796-803. doi: 10.1016/j.brainresbull.2008.01.007. Epub 2008 Feb 4.

引用本文的文献

2
EEG-based sensorimotor neurofeedback for motor neurorehabilitation in children and adults: A scoping review.
Clin Neurophysiol. 2024 Nov;167:143-166. doi: 10.1016/j.clinph.2024.08.009. Epub 2024 Aug 20.
4
Brain-computer interface: trend, challenges, and threats.
Brain Inform. 2023 Aug 4;10(1):20. doi: 10.1186/s40708-023-00199-3.
5
Real-Time Navigation in Google Street View Using a Motor Imagery-Based BCI.
Sensors (Basel). 2023 Feb 3;23(3):1704. doi: 10.3390/s23031704.
8
A resource for assessing dynamic binary choices in the adult brain using EEG and mouse-tracking.
Sci Data. 2022 Jul 16;9(1):416. doi: 10.1038/s41597-022-01538-5.
9
Noninvasive Human-Computer Interface Methods and Applications for Robotic Control: Past, Current, and Future.
Comput Intell Neurosci. 2022 Jun 8;2022:1635672. doi: 10.1155/2022/1635672. eCollection 2022.
10
Classification of Electroencephalogram Signal for Developing Brain-Computer Interface Using Bioinspired Machine Learning Approach.
Comput Intell Neurosci. 2022 Feb 25;2022:4487254. doi: 10.1155/2022/4487254. eCollection 2022.

本文引用的文献

1
2
A P300 event-related potential brain-computer interface (BCI): the effects of matrix size and inter stimulus interval on performance.
Biol Psychol. 2006 Oct;73(3):242-52. doi: 10.1016/j.biopsycho.2006.04.007. Epub 2006 Jul 24.
3
Neuronal ensemble control of prosthetic devices by a human with tetraplegia.
Nature. 2006 Jul 13;442(7099):164-71. doi: 10.1038/nature04970.
4
BCI Meeting 2005--workshop on BCI signal processing: feature extraction and translation.
IEEE Trans Neural Syst Rehabil Eng. 2006 Jun;14(2):135-8. doi: 10.1109/TNSRE.2006.875637.
5
Walking from thought.
Brain Res. 2006 Feb 3;1071(1):145-52. doi: 10.1016/j.brainres.2005.11.083. Epub 2006 Jan 10.
7
Sensorimotor rhythm-based brain-computer interface (BCI): feature selection by regression improves performance.
IEEE Trans Neural Syst Rehabil Eng. 2005 Sep;13(3):372-9. doi: 10.1109/TNSRE.2005.848627.
8
EEG-based neuroprosthesis control: a step towards clinical practice.
Neurosci Lett. 2005;382(1-2):169-74. doi: 10.1016/j.neulet.2005.03.021. Epub 2005 Apr 2.
9
A brain-computer interface using electrocorticographic signals in humans.
J Neural Eng. 2004 Jun;1(2):63-71. doi: 10.1088/1741-2560/1/2/001. Epub 2004 Jun 14.
10
Brain-computer interface (BCI) operation: signal and noise during early training sessions.
Clin Neurophysiol. 2005 Jan;116(1):56-62. doi: 10.1016/j.clinph.2004.07.004.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验