Suppr超能文献

利用非侵入式脑机接口模拟计算机鼠标控制

Emulation of computer mouse control with a noninvasive brain-computer interface.

作者信息

McFarland Dennis J, Krusienski Dean J, Sarnacki William A, Wolpaw Jonathan R

机构信息

Laboratory of Nervous System Disorders, Wadsworth Center, New York State Department of Health and State University of New York, Albany, NY 12201, USA.

出版信息

J Neural Eng. 2008 Jun;5(2):101-10. doi: 10.1088/1741-2560/5/2/001. Epub 2008 Mar 5.

Abstract

Brain-computer interface (BCI) technology can provide nonmuscular communication and control to people who are severely paralyzed. BCIs can use noninvasive or invasive techniques for recording the brain signals that convey the user's commands. Although noninvasive BCIs are used for simple applications, it has frequently been assumed that only invasive BCIs, which use electrodes implanted in the brain, will be able to provide multidimensional sequential control of a robotic arm or a neuroprosthesis. The present study shows that a noninvasive BCI using scalp-recorded electroencephalographic (EEG) activity and an adaptive algorithm can provide people, including people with spinal cord injuries, with two-dimensional cursor movement and target selection. Multiple targets were presented around the periphery of a computer screen, with one designated as the correct target. The user's task was to use EEG to move a cursor from the center of the screen to the correct target and then to use an additional EEG feature to select the target. If the cursor reached an incorrect target, the user was instructed not to select it. Thus, this task emulated the key features of mouse operation. The results indicate that people with severe motor disabilities could use brain signals for sequential multidimensional movement and selection.

摘要

脑机接口(BCI)技术能够为严重瘫痪者提供非肌肉方式的通信与控制。BCI可采用非侵入性或侵入性技术来记录传达用户指令的脑信号。尽管非侵入性BCI用于简单应用,但人们常常认为只有使用植入大脑电极的侵入性BCI才能对机械臂或神经假体进行多维顺序控制。本研究表明,一种利用头皮记录的脑电图(EEG)活动和自适应算法的非侵入性BCI能够为包括脊髓损伤患者在内的人群提供二维光标移动和目标选择功能。在电脑屏幕周边呈现多个目标,其中一个被指定为正确目标。用户的任务是利用脑电图将光标从屏幕中心移至正确目标,然后使用额外的脑电图特征来选择目标。如果光标到达错误目标,用户会被指示不要选择它。因此,该任务模拟了鼠标操作的关键特征。结果表明,严重运动功能障碍者能够利用脑信号进行顺序多维运动和选择。

相似文献

3
Electroencephalographic (EEG) control of three-dimensional movement.脑电图(EEG)控制三维运动。
J Neural Eng. 2010 Jun;7(3):036007. doi: 10.1088/1741-2560/7/3/036007. Epub 2010 May 11.
4
Brain-computer interfaces for communication and control.用于通信和控制的脑机接口。
Clin Neurophysiol. 2002 Jun;113(6):767-91. doi: 10.1016/s1388-2457(02)00057-3.
7
Target selection with hybrid feature for BCI-based 2-D cursor control.基于脑机接口的二维光标控制的混合特征目标选择。
IEEE Trans Biomed Eng. 2012 Jan;59(1):132-40. doi: 10.1109/TBME.2011.2167718. Epub 2011 Sep 15.
8
High-resolution EEG techniques for brain-computer interface applications.用于脑机接口应用的高分辨率脑电图技术。
J Neurosci Methods. 2008 Jan 15;167(1):31-42. doi: 10.1016/j.jneumeth.2007.06.031. Epub 2007 Jul 10.

引用本文的文献

4
Brain-computer interface: trend, challenges, and threats.脑机接口:趋势、挑战与威胁。
Brain Inform. 2023 Aug 4;10(1):20. doi: 10.1186/s40708-023-00199-3.

本文引用的文献

5
Walking from thought.从思考中走出。
Brain Res. 2006 Feb 3;1071(1):145-52. doi: 10.1016/j.brainres.2005.11.083. Epub 2006 Jan 10.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验