Kurisu Naoyuki, Tsujiuchi Nobutaka, Koizumi Takayuki
Mechanical Engineering Department, Doshisha University, Kyotanabe, Kyoto 610-0321, Japan.
Annu Int Conf IEEE Eng Med Biol Soc. 2009;2009:6922-5. doi: 10.1109/IEMBS.2009.5333631.
In this report, we improve the motion discrimination method from electromyogram (EMG) for a prosthetic hand and propose prosthetic hand control. In the past, we proved that a motion discrimination method using conic models could discriminate three hand motions without the incorrect discriminations that the elbow motions cause. In this research, to increase discrimination accuracy of motion discrimination using conic models, we propose a feature extraction method using quadratic polynomials. Additionally, because many prosthetic hands using motion discrimination have constant motion speed that can't be controlled, we propose an angular velocity generation method using multiple regression models. We verified these methods by controlling the 3D hand model. In the experiment, the proposed method could discriminate five motions at a rate of above 90 percent without the incorrect discriminations that elbow motions cause. Moreover, the wrist joint angle of the 3D hand model could be controlled by standard variation of 3[deg] or less.
在本报告中,我们改进了用于假手的肌电图(EMG)运动识别方法,并提出了假手控制方法。过去,我们证明了使用圆锥模型的运动识别方法可以区分三种手部运动,且不会出现肘部运动导致的错误识别。在本研究中,为了提高使用圆锥模型的运动识别的准确率,我们提出了一种使用二次多项式的特征提取方法。此外,由于许多使用运动识别的假手具有无法控制的恒定运动速度,我们提出了一种使用多元回归模型的角速度生成方法。我们通过控制3D手部模型验证了这些方法。在实验中,所提出的方法能够以90%以上的准确率区分五种运动,且不会出现肘部运动导致的错误识别。此外,3D手部模型的腕关节角度可以控制在标准偏差3°或更小的范围内。