Suppr超能文献

考虑到肌电信号随时间变化的实时运动辨别。

Real-time motion discrimination considering variation of EMG signals associated with lapse of time.

作者信息

Shiraki Masashi, Tsujiuchi Nobutaka, Akihito Ito, Yamamoto Tetsushi

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2015 Aug;2015:490-3. doi: 10.1109/EMBC.2015.7318406.

Abstract

This study proposes a motion discrimination method that considers the variation of electromyogram (EMG) signals associated with a lapse of time. In a previous study, we proposed a real-time discrimination method based on EMG signals of the forearm. Our method uses a hypersphere model as a discriminator. In motion discrimination using EMG signals, one problem is to maintain high discrimination accuracy over time because EMG signals change with a lapse of time. This study analyzed the effect of changes in EMG signals on our method. Based on analysis results, adding a relearning system of the decision criteria to the discrimination system was expected to be effective. We created a new motion discrimination method that contains the relearning system and experimentally verified its effectiveness. The motion discrimination system discriminated three hand motions, open, grasp, and pinch with discrimination accuracy above 90% in real-time (processing time below 300 ms) even after time elapsed.

摘要

本研究提出了一种考虑与时间推移相关的肌电图(EMG)信号变化的运动判别方法。在之前的一项研究中,我们提出了一种基于前臂EMG信号的实时判别方法。我们的方法使用超球体模型作为判别器。在使用EMG信号进行运动判别时,一个问题是随着时间的推移保持较高的判别准确率,因为EMG信号会随时间变化。本研究分析了EMG信号变化对我们方法的影响。基于分析结果,预计在判别系统中添加决策标准的再学习系统会有效。我们创建了一种包含再学习系统的新运动判别方法,并通过实验验证了其有效性。即使经过一段时间,该运动判别系统仍能实时(处理时间低于300毫秒)以高于90%的判别准确率区分三种手部动作,即张开、抓握和捏合。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验