Jit Biswas, Maniyeri Jayachandran, Louis Shue, Philip Yap Lin Kiat
Networking Protocols Department & Institute for Infocomm Research, Agency for Science Technology and Research, 1 Fusionopolis Way, Connexis, Singapore 138632.
Annu Int Conf IEEE Eng Med Biol Soc. 2009;2009:1675-8. doi: 10.1109/IEMBS.2009.5333881.
In systems and trials concerning wearable sensors and devices used for medical data collection, the validation of sensor data with respect to manual observations is very important. However, this is often problematic because of feigned behavior, errors in manual recording (misclassification), gaps in recording (missing readings), missed observations and timing mismatch between manual observations and sensor data due to a difference in time granularity. Using sleep activity pattern monitoring as an example we present a fast algorithm for matching sensor data with manual observations. Major components include a) signal analysis to classify states of sleep activity pattern, b) matching of states with Sleep Diary (SD) and c) automated detection of anomalies and reconciliation of mismatches between the SD and the sensor data.
在涉及用于医学数据收集的可穿戴传感器和设备的系统及试验中,将传感器数据与人工观测数据进行验证非常重要。然而,这通常存在问题,原因包括伪装行为、人工记录中的错误(错误分类)、记录间隙(读数缺失)、观测遗漏以及由于时间粒度差异导致的人工观测与传感器数据之间的时间不匹配。以睡眠活动模式监测为例,我们提出一种将传感器数据与人工观测数据进行匹配的快速算法。主要组成部分包括:a)信号分析以对睡眠活动模式的状态进行分类;b)将这些状态与睡眠日记(SD)进行匹配;c)自动检测异常情况并协调SD与传感器数据之间的不匹配。