Dzyubachyk Oleh, Jelier Rob, Lehner Ben, Niessen Wiro, Meijering Erik
Departments of Medical Informatics and Radiology, Erasmus MC - University Medical Center Rotterdam, The Netherlands.
Annu Int Conf IEEE Eng Med Biol Soc. 2009;2009:5356-9. doi: 10.1109/IEMBS.2009.5334046.
The nematode Caenorhabditis elegans (C. elegans) is a widely used model organism in biological investigations. Due to its well-known and invariant cell lineage tree, it can be used to study the effects of mutations and various disease processes. Effective and efficient analysis of the wealth of time-lapse fluorescence microscopy image data acquired in such studies requires automation of the cell segmentation and tracking tasks involved. This is hampered by many factors, including autofluorescence effects, low and uneven contrast throughout the images, high noise levels, large numbers of possibly simultaneous cell divisions, and touching or clustering cells. In this paper, we present a new algorithm for segmentation and tracking of cells in C. elegans embryogenesis image data. It is based on the model evolution framework for image segmentation and uses a novel multi-object tracking scheme based on energy minimization via graph cuts. Preliminary experiments on publicly available test data demonstrate the potential of the algorithm compared to existing approaches.
线虫秀丽隐杆线虫(C. elegans)是生物学研究中广泛使用的模式生物。由于其细胞谱系树众所周知且固定不变,它可用于研究突变和各种疾病过程的影响。要对这类研究中获取的大量延时荧光显微镜图像数据进行有效且高效的分析,就需要将细胞分割和跟踪任务自动化。这受到许多因素的阻碍,包括自发荧光效应、图像整体对比度低且不均匀、噪声水平高、大量可能同时发生的细胞分裂,以及细胞相互接触或聚集。在本文中,我们提出了一种用于分割和跟踪秀丽隐杆线虫胚胎发育图像数据中细胞的新算法。它基于图像分割的模型演化框架,并使用了一种基于通过图割进行能量最小化的新型多目标跟踪方案。在公开可用的测试数据上进行的初步实验证明了该算法与现有方法相比的潜力。