Suppr超能文献

基于模型的方法用于追踪秀丽隐杆线虫荧光显微镜数据中的胚胎发育过程。

Model-based approach for tracking embryogenesis in Caenorhabditis elegans fluorescence microscopy data.

作者信息

Dzyubachyk Oleh, Jelier Rob, Lehner Ben, Niessen Wiro, Meijering Erik

机构信息

Departments of Medical Informatics and Radiology, Erasmus MC - University Medical Center Rotterdam, The Netherlands.

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2009;2009:5356-9. doi: 10.1109/IEMBS.2009.5334046.

Abstract

The nematode Caenorhabditis elegans (C. elegans) is a widely used model organism in biological investigations. Due to its well-known and invariant cell lineage tree, it can be used to study the effects of mutations and various disease processes. Effective and efficient analysis of the wealth of time-lapse fluorescence microscopy image data acquired in such studies requires automation of the cell segmentation and tracking tasks involved. This is hampered by many factors, including autofluorescence effects, low and uneven contrast throughout the images, high noise levels, large numbers of possibly simultaneous cell divisions, and touching or clustering cells. In this paper, we present a new algorithm for segmentation and tracking of cells in C. elegans embryogenesis image data. It is based on the model evolution framework for image segmentation and uses a novel multi-object tracking scheme based on energy minimization via graph cuts. Preliminary experiments on publicly available test data demonstrate the potential of the algorithm compared to existing approaches.

摘要

线虫秀丽隐杆线虫(C. elegans)是生物学研究中广泛使用的模式生物。由于其细胞谱系树众所周知且固定不变,它可用于研究突变和各种疾病过程的影响。要对这类研究中获取的大量延时荧光显微镜图像数据进行有效且高效的分析,就需要将细胞分割和跟踪任务自动化。这受到许多因素的阻碍,包括自发荧光效应、图像整体对比度低且不均匀、噪声水平高、大量可能同时发生的细胞分裂,以及细胞相互接触或聚集。在本文中,我们提出了一种用于分割和跟踪秀丽隐杆线虫胚胎发育图像数据中细胞的新算法。它基于图像分割的模型演化框架,并使用了一种基于通过图割进行能量最小化的新型多目标跟踪方案。在公开可用的测试数据上进行的初步实验证明了该算法与现有方法相比的潜力。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验