Suppr超能文献

网络拓扑重排揭示酵母蛋白质相互作用网络中的系统模式。

Network topological reordering revealing systemic patterns in yeast protein interaction networks.

作者信息

Wu Xiaogang, Pandey Ragini, Chen Jake Yue

机构信息

School of Informatics, Indiana University, Indianapolis, IN 46202, USA.

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2009;2009:6954-7. doi: 10.1109/IEMBS.2009.5333885.

Abstract

Identifying candidate genes/proteins involved in human disease specific molecular pathways or networks has been a primary focus of biomedical research. Although node ranking and graph clustering methods can help identify localized topological properties in a network, it remains unclear how the results should be interpreted in biological functional context in systems-level. In complex biomolecular interaction networks, biomolecular entities may not have absolute ranks or clear cluster boundary among them. We presented Ant Colony Optimization Reordering (ACOR) method to examine emerging network properties. The task of reordering nodes is represented as the problem of finding optimal density distribution of "ant colony" on all nodes of the network. We applied ACOR method to re-analyze a yeast protein-protein interaction (PPI) network annotated with functional information (i.e., lethality), which revealed intriguing systems-level functional features.

摘要

识别参与人类疾病特异性分子途径或网络的候选基因/蛋白质一直是生物医学研究的主要重点。尽管节点排序和图聚类方法有助于识别网络中的局部拓扑特性,但在系统层面的生物学功能背景下,如何解释这些结果仍不明确。在复杂的生物分子相互作用网络中,生物分子实体之间可能没有绝对的排名或清晰的聚类边界。我们提出了蚁群优化重排(ACOR)方法来研究新兴的网络特性。节点重排任务被表示为在网络所有节点上寻找“蚁群”的最优密度分布问题。我们应用ACOR方法重新分析了一个标注有功能信息(即致死性)的酵母蛋白质-蛋白质相互作用(PPI)网络,揭示了有趣的系统层面功能特征。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验