Suppr超能文献

Effects of electrical stimulation of the carotid sinus baroreflex using the Rheos device on ventricular-vascular coupling and myocardial efficiency assessed by pressure-volume relations in non-vagotomized anesthetized dogs.

作者信息

Georgakopoulos Dimitrios, Wagner Darrell, Cates Adam W, Irwin Eric, Lovett Eric G

机构信息

CVRx Inc., Minneapolis, MN 55445, USA.

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2009;2009:2025-9. doi: 10.1109/IEMBS.2009.5334421.

Abstract

We investigated the effects of the carotid sinus baroreflex on coupling of the left ventricle (LV) and the arterial system in twelve anesthetized dogs, with all nerves and carotid sinus circulation intact and instrumented to measure LV pressure and volume. The Rheos(R) device was used to directly electrically stimulate the carotid sinus baroreceptors. Stimulation resulted in a significant reduction in systolic blood pressure (SBP), 95.6+/-8.1 to 77.3+/-5.3 mmHg (p<0.0001) and heart rate (HR), 85+/-13.2 to 67.2+/-18.8 (p<.001). Cardiac output was unchanged. Ventricular-vascular coupling was determined by the ratio of arterial and ventricular elastance (Ea/Ees). At baseline, Ea/Ees was 1.26+/-0.27 and after stimulation decreased to 0.51+/-0.16 (p<0.001), favoring optimization of metabolic efficiency. This decrease was entirely due to a reduction in Ea while Ees was unchanged. The maintenance of end-diastolic volume (EDV) during stimulation allowed stroke work (SW) to remain unchanged as arterial pressure decreased. Thus mechanical efficiency, described as the ratio of stroke work to pressure-volume area (SW/PVA) increased from baseline of 0.51+/-0.05 to 0.69+/-0.04 (p<0.0001) during baroreceptor stimulation. We conclude that electrical activation of the carotid sinus baroreceptors results in optimization of both energetic and mechanical efficiency and has no acute effect on LV Ees. These novel findings await confirmation in chronically instrumented animals.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验