Markaki Maria, Stylianou Yannis
Department of Computer Science, University of Crete, 71409 Crete, Greece.
Annu Int Conf IEEE Eng Med Biol Soc. 2009;2009:2514-7. doi: 10.1109/IEMBS.2009.5334850.
In this paper, we consider the use of Modulation Spectra for voice pathology detection and classification. To reduce the high-dimensionality space generated by Modulation spectra we suggest the use of Higher Order Singular Value Decomposition (SVD) and we propose a feature selection algorithm based on the Mutual Information between subjective voice quality and computed features. Using SVM with a radial basis function (RBF) kernel as classifier, we conducted experiments on a database of sustained vowel recordings from healthy and pathological voices. For voice pathology detection, the suggested approach achieved a detection rate of 94.1% and an Area Under the Curve (AUC) score of 97.8%. For voice pathology classification, an average detection rate and AUC of 88.6% and 94.8%, respectively, was achieved in classifying polyp against keratosis leukoplakia, adductor spasmodic dysphonia and vocal nodules.
在本文中,我们考虑将调制谱用于语音病理学检测和分类。为了减少调制谱产生的高维空间,我们建议使用高阶奇异值分解(SVD),并提出一种基于主观语音质量与计算特征之间互信息的特征选择算法。使用具有径向基函数(RBF)核的支持向量机(SVM)作为分类器,我们在一个包含健康和病理语音的持续元音录音数据库上进行了实验。对于语音病理学检测,所建议的方法实现了94.1%的检测率和97.8%的曲线下面积(AUC)得分。对于语音病理学分类,在区分息肉与角化性白斑、内收肌痉挛性发音障碍和声带小结时,平均检测率和AUC分别达到了88.6%和94.8%。