Suppr超能文献

利用调制谱进行语音病理学检测与分类。

Using modulation spectra for voice pathology detection and classification.

作者信息

Markaki Maria, Stylianou Yannis

机构信息

Department of Computer Science, University of Crete, 71409 Crete, Greece.

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2009;2009:2514-7. doi: 10.1109/IEMBS.2009.5334850.

Abstract

In this paper, we consider the use of Modulation Spectra for voice pathology detection and classification. To reduce the high-dimensionality space generated by Modulation spectra we suggest the use of Higher Order Singular Value Decomposition (SVD) and we propose a feature selection algorithm based on the Mutual Information between subjective voice quality and computed features. Using SVM with a radial basis function (RBF) kernel as classifier, we conducted experiments on a database of sustained vowel recordings from healthy and pathological voices. For voice pathology detection, the suggested approach achieved a detection rate of 94.1% and an Area Under the Curve (AUC) score of 97.8%. For voice pathology classification, an average detection rate and AUC of 88.6% and 94.8%, respectively, was achieved in classifying polyp against keratosis leukoplakia, adductor spasmodic dysphonia and vocal nodules.

摘要

在本文中,我们考虑将调制谱用于语音病理学检测和分类。为了减少调制谱产生的高维空间,我们建议使用高阶奇异值分解(SVD),并提出一种基于主观语音质量与计算特征之间互信息的特征选择算法。使用具有径向基函数(RBF)核的支持向量机(SVM)作为分类器,我们在一个包含健康和病理语音的持续元音录音数据库上进行了实验。对于语音病理学检测,所建议的方法实现了94.1%的检测率和97.8%的曲线下面积(AUC)得分。对于语音病理学分类,在区分息肉与角化性白斑、内收肌痉挛性发音障碍和声带小结时,平均检测率和AUC分别达到了88.6%和94.8%。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验