Suppr超能文献

基于 GMM-SVM 方法的病理性嗓音与正常嗓音的区分。

Discrimination between pathological and normal voices using GMM-SVM approach.

机构信息

Thinkit Speech Lab, Institute of Acoustics, Chinese Academy of Science, Beijing, China.

出版信息

J Voice. 2011 Jan;25(1):38-43. doi: 10.1016/j.jvoice.2009.08.002. Epub 2010 Feb 4.

Abstract

Acoustic features of vocal tract function are used widely in the study of pathological voices detection. Classification of normal and pathological voices by acoustic parameters is a useful way to diagnose voice diseases. In this aspect, mel-frequency cepstral coefficients are proved to be effective with traditional classifiers such as Gaussian Mixture Model (GMM). However, the accuracy of the classification method can be further improved. In this article, a Gaussian mixture model supervector kernel-support vector machine (GMM-SVM) classifier is compared with GMM classifier for the detection of voice pathology. We found that a sustain vowel phonation can be classified as normal or pathological with an accuracy of 96.1%. Voice recordings are selected from the Kay database to carry out the experiments. Experimental results show that equal error rates decrease from 8.0% for GMM to 4.6% for GMM-SVM.

摘要

声道功能的声学特征在病理嗓音检测研究中得到了广泛应用。通过声学参数对正常和病理嗓音进行分类是诊断嗓音疾病的一种有效方法。在这方面,梅尔频率倒谱系数与传统分类器(如高斯混合模型 (GMM))相结合被证明是有效的。然而,分类方法的准确性可以进一步提高。在本文中,将高斯混合模型超矢量核支持向量机 (GMM-SVM) 分类器与 GMM 分类器进行了比较,用于检测嗓音病理。我们发现,持续元音发声可以以 96.1%的准确率被分类为正常或病理。实验从 Kay 数据库中选择了语音录音进行实验。实验结果表明,对于 GMM,等错误率从 8.0%降低到了 GMM-SVM 的 4.6%。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验