Suppr超能文献

从嘈杂的脑磁图数据中准确重建大脑活动和功能连接。

Accurate reconstruction of brain activity and functional connectivity from noisy MEG data.

作者信息

Owen Julia P, Wipf David P, Attias Hagai T, Sekihara Kensuke, Nagarajan Srikantan S

机构信息

Biomagnetic Imaging Laboratory, Dept. Radiology and Biomedical Imaging, UCSF San Francisco, CA, USA.

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2009;2009:65-8. doi: 10.1109/IEMBS.2009.5335005.

Abstract

The synchronous brain activity measured via magnetoencephalography (MEG) arises from current dipoles located throughout the cortex. Estimating the number, location, time-course, and orientation of these dipoles, called sources, remains a challenging task, one that is significantly compounded by the effects of source correlations and interference from spontaneous brain activity and sensor noise. Likewise, assessing the interactions between the individual sources, known as functional connectivity, is also confounded by noise and correlations in the sensor recordings. Computational complexity has been an obstacle to computing functional connectivity. This paper demonstrates the application of an empirical Bayesian method to perform source localization with MEG data in order to estimate measures of functional connectivity. We demonstrate that brain source activity inferred from this algorithm is better suited to uncover the interactions between brain areas as compared to other commonly used source localization algorithms.

摘要

通过脑磁图(MEG)测量的同步脑活动源自遍布整个皮层的电流偶极子。估计这些偶极子(即源)的数量、位置、时间进程和方向仍然是一项具有挑战性的任务,而源相关性以及自发脑活动和传感器噪声的干扰会使这一任务变得更加复杂。同样,评估各个源之间的相互作用(即功能连接性)也会因传感器记录中的噪声和相关性而变得复杂。计算复杂性一直是计算功能连接性的障碍。本文展示了一种经验贝叶斯方法在利用MEG数据进行源定位以估计功能连接性指标方面的应用。我们证明,与其他常用的源定位算法相比,从该算法推断出的脑源活动更适合揭示脑区之间的相互作用。

相似文献

6
Line-source modeling and estimation with magnetoencephalography.利用脑磁图进行线源建模与估计。
IEEE Trans Biomed Eng. 2005 May;52(5):839-51. doi: 10.1109/TBME.2005.844276.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验