Balagadde Frederick K
Lawrence Livermore National Laboratory, Livermore, CA 94550, USA.
Annu Int Conf IEEE Eng Med Biol Soc. 2009;2009:1064-6. doi: 10.1109/IEMBS.2009.5335037.
Since the inception of synthetic biology as a discipline, bioengineers have used the electronic circuit paradigm to analyze, model, simulate and interpret the behavior of genetic circuits. In this paper, we elaborate upon the effect of evolution as an overriding attribute of the biological systems, which makes genetic circuits inherently fickle compared to their electronic counterparts. Shrinking the volume of programmed microbial population reduces the effects of evolution. This concept was demonstrated by characterizing the dynamics of Escherichia coli cells carrying a synthetic "population control" circuit, which regulates cell density through a feedback mechanism based on quorum sensing. The microchemostat prolonged the lifetime of the programmed circuit by at least an order of magnitude compared macro-scale characterization schemes.
自合成生物学作为一门学科创立以来,生物工程师们一直使用电子电路范式来分析、建模、模拟和解释基因电路的行为。在本文中,我们详细阐述了进化作为生物系统首要属性的影响,这使得基因电路与其电子对应物相比本质上更不稳定。缩小编程微生物群体的体积可减少进化的影响。通过表征携带合成“群体控制”电路的大肠杆菌细胞的动态特性证明了这一概念,该电路通过基于群体感应的反馈机制调节细胞密度。与宏观尺度表征方案相比,微恒化器将编程电路的寿命延长了至少一个数量级。