Suppr超能文献

全自动微恒化器中长期且可编程的细菌连续培养。

Long-Term and Programmable Bacterial Subculture in Completely Automated Microchemostats.

机构信息

Department of Mechanical Engineering, and ‡Department of Biomedical Engineering, Ulsan National Institute of Science and Technology , 50 UNIST-gil, Ulsan 44919, Republic of Korea.

出版信息

Anal Chem. 2017 Sep 19;89(18):9676-9684. doi: 10.1021/acs.analchem.7b01076. Epub 2017 Sep 5.

Abstract

A controllable microchemostat can provide an ideal, powerful means to study the growth behavior of microorganisms by improving conventional macroscale chemostat. However, a challenge remains for implementing both continuous growth and active population control of microorganisms at the same time because they keep communicating with nearby culture environments by regulating their metabolism. Here, we present a novel microchemostat that enables reversible bacterial isolation, continuous chemical refreshment, and dynamic physicochemical stimulation. The microchemostat not only controls bacterial growth and subculture conditions in a completely automated and programmed manner but it also makes it possible to manipulate bacterial populations from a single bacterium to an ultrahigh density for long-term subculture periods with ultralow reagent consumption. Moreover, the microchemostat enables in situ measurement and feedback control of bacterial growth and population through various subculture programming modes that are sequentially performed using a single microchemostat over 720 h; to the best of our knowledge, this is the longest microchemostat culture of bacterial cells reported to date. Hence, we ensure that the microchemostat can be further applied to a wide range of microbial studies on a single chip, such as nutrient optimization, genetic induction, environmental selection, high-throughput screening, and evolutionary adaptation.

摘要

可控微流控芯片可以通过改进传统的宏观恒化器为微生物的生长行为研究提供理想、强大的手段。然而,由于微生物通过调节其新陈代谢与周围的培养环境不断进行交流,因此同时实现微生物的连续生长和主动种群控制仍然是一个挑战。在这里,我们提出了一种新颖的微流控芯片,该芯片能够实现细菌的可逆分离、连续的化学更新和动态的物理化学刺激。微流控芯片不仅以完全自动化和编程的方式控制细菌的生长和传代条件,而且还可以在超低试剂消耗的情况下,从单个细菌操纵细菌种群到超高密度,实现长期传代。此外,微流控芯片通过各种传代编程模式实现细菌生长和种群的原位测量和反馈控制,这些模式可以在单个微流控芯片上顺序进行,持续时间超过 720 小时;据我们所知,这是迄今为止报道的最长的细菌细胞微流控培养。因此,我们确保微流控芯片可以进一步应用于单个芯片上的各种微生物研究,如营养优化、遗传诱导、环境选择、高通量筛选和进化适应。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验