Suppr超能文献

基于经验模态分解的μ节律去同步化检测

Mu rhythm desynchronization detection based on empirical mode decomposition.

作者信息

Wan Baikun, Zhou Zhongxing, Xu Lifeng, Ming Dong, Qi Hongzhi, Cheng Longlong

机构信息

Department of Biomedical Engineering, College of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin 300072, PR China.

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2009;2009:2232-5. doi: 10.1109/IEMBS.2009.5335012.

Abstract

The aim of this paper is to investigate the possibility of using empirical mode decomposition (EMD) method in detecting the desynchronized mu rhythm of motor imagery EEG signal. A number of EEG studies have identified the mu rhythm desynchronization a reliable EEG pattern for brain-computer interface. Considering the non-stationary characteristics of the motor imagery EEG, the EMD method is proposed to decompose the EEG signal into intrinsic mode functions (IMFs). By analyzing the power spectral density (PSD) of the IMFs, the characteristics one representing mu rhythm oscillations can be detected. Then by Hilbert transformation, the event-related desynchronization phenomenon can be found by the envelope of the characteristics IMF. Results demonstrate that the EMD method is an effective time-frequency analysis tool for non-stationary EEG signal.

摘要

本文旨在研究使用经验模态分解(EMD)方法检测运动想象脑电信号中去同步化μ节律的可能性。大量脑电研究已将μ节律去同步化确定为脑机接口的一种可靠脑电模式。考虑到运动想象脑电的非平稳特性,提出了EMD方法将脑电信号分解为固有模态函数(IMF)。通过分析IMF的功率谱密度(PSD),可以检测到代表μ节律振荡的特征成分。然后通过希尔伯特变换,利用特征IMF的包络发现事件相关去同步化现象。结果表明,EMD方法是一种用于非平稳脑电信号的有效时频分析工具。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验