Suppr超能文献

基于经验模态分解及其导数的癫痫发作分类。

Epileptic seizure classifications using empirical mode decomposition and its derivative.

机构信息

Department of Biomedical Engineering, Faculty of Engineering and Architecture, Izmir Katip Celebi University, Cigli, Izmir, Turkey.

Department of Biophysics, Faculty of Medicine, Izmir Katip Celebi University, Cigli, Izmir, Turkey.

出版信息

Biomed Eng Online. 2020 Feb 14;19(1):10. doi: 10.1186/s12938-020-0754-y.

Abstract

BACKGROUND

Epilepsy is one of the most common neurological disorders associated with disruption of brain activity. In the classification and detection of epileptic seizures, electroencephalography (EEG) measurements, which record the electrical activities of the brain, are frequently used. Empirical mode decomposition (EMD) and its derivative, ensemble EMD (EEMD) are recently developed methods used to decompose non-stationary and nonlinear signals such as EEG into a finite number of oscillations called intrinsic mode functions (IMFs). Our main objective in this study is to present a hybrid IMF selection method combining four different approaches (energy, correlation, power spectral distance, and statistical significance measures), and investigate the effect of selected IMFs extracted by EMD and EEMD on the classification. We have applied the proposed IMF selection approach on the classification of EEG signals recorded from epilepsy patients who are under treatment at our collaborator hospital. Multichannel EEG signals collected from epilepsy patients are decomposed into IMFs, and then IMF selection was performed. Finally, time- and spectral-domain, and nonlinear features are extracted and feature sets are created for the classification.

RESULTS

The maximum classification accuracies obtained using various combinations of IMFs were 94.56%, 95.63%, 96.8%, and 96.25% for SVM, KNN, naive Bayes, and logistic regression classifiers, respectively, by using EMD analysis; whereas, the EEMD approach has provided maximum classification accuracies of 96.06%, 97%, 97%, and 96.25% for SVM, KNN, naive Bayes, and logistic regression, respectively. Classification performance with the same features obtained using direct EEG signals instead of the decomposed IMFs was worse than the aforementioned 2 approaches for every combination.

CONCLUSION

Simulation results demonstrate that the proposed IMF selection approach affects the classification results. Also, EEMD provides a robust method for feature extraction from EEG signals in order to classify pre-seizure and seizure segments.

摘要

背景

癫痫是一种常见的与大脑活动紊乱有关的神经疾病。在癫痫发作的分类和检测中,常使用脑电图(EEG)测量来记录大脑的电活动。经验模态分解(EMD)及其衍生方法——集合经验模态分解(EEMD)是最近开发的用于将 EEG 等非平稳非线性信号分解为有限数量的固有模态函数(IMF)的方法。我们的主要目标是提出一种混合 IMF 选择方法,该方法结合了四种不同的方法(能量、相关性、功率谱距离和统计显著性度量),并研究 EMD 和 EEMD 提取的所选 IMF 对分类的影响。我们已将所提出的 IMF 选择方法应用于在我们合作医院接受治疗的癫痫患者的 EEG 信号分类。从癫痫患者采集的多通道 EEG 信号被分解为 IMF,然后进行 IMF 选择。最后,提取时频域和非线性特征,并创建特征集以进行分类。

结果

使用 SVM、KNN、朴素贝叶斯和逻辑回归分类器,分别使用 EMD 分析获得的最高分类准确率为 94.56%、95.63%、96.8%和 96.25%;而 EEMD 方法提供的最高分类准确率为 96.06%、97%、97%和 96.25%。与前两种方法相比,使用直接 EEG 信号而不是分解的 IMF 获得相同特征的分类性能更差。

结论

模拟结果表明,所提出的 IMF 选择方法会影响分类结果。此外,EEMD 为从 EEG 信号中提取特征以分类发作前和发作期间提供了一种稳健的方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bc6d/7023773/5f1d23c9e3e4/12938_2020_754_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验