Suppr超能文献

通过线性分析对呼吸信号进行分类。

Classification of respiratory signals by linear analysis.

作者信息

Aydore Sergul, Sen Ipek, Kahya Yasemin P, Mihcak M

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2009;2009:2617-20. doi: 10.1109/IEMBS.2009.5335395.

Abstract

The aim of this study is the classification of wheeze and non-wheeze epochs within respiratory sound signals acquired from patients with asthma and COPD. Since a wheeze signal, having a sinusoidal waveform, has a different behavior in time and frequency domains from that of a non-wheeze signal, the features selected for classification are kurtosis, Renyi entropy, f(50)/ f(90) ratio and mean-crossing irregularity. Upon calculation of these features for each wheeze and non-wheeze portion, the whole data scattered as two classes in four dimensional feature space is projected using Fisher Discriminant Analysis (FDA) onto the single dimensional space that separates the two classes best. Observing that the two classes are visually well separated in this new space, Neyman-Pearson hypothesis testing is applied. Finally, the correct classification rate is %95.1 for the training set, and leave-one-out approach pursuing the above methodology yields a success rate of %93.5 for the test set.

摘要

本研究的目的是对从哮喘和慢性阻塞性肺疾病(COPD)患者获取的呼吸音信号中的哮鸣音和非哮鸣音时段进行分类。由于具有正弦波形的哮鸣音信号在时域和频域中的行为与非哮鸣音信号不同,因此选择用于分类的特征是峰度、雷尼熵、f(50)/f(90)比率和平均交叉不规则度。在计算每个哮鸣音和非哮鸣音部分的这些特征后,使用Fisher判别分析(FDA)将在四维特征空间中作为两类分散的整个数据投影到能最佳分离这两类的一维空间中。观察到在这个新空间中这两类在视觉上能很好地分离,于是应用了奈曼-皮尔逊假设检验。最后,训练集的正确分类率为95.1%,采用上述方法的留一法在测试集上的成功率为93.5%。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验