Suppr超能文献

在基层医疗机构中使用自动化视网膜图像分析进行糖尿病视网膜病变筛查可提高眼科护理的依从性。

Diabetic Retinopathy Screening with Automated Retinal Image Analysis in a Primary Care Setting Improves Adherence to Ophthalmic Care.

机构信息

Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, Missouri.

Department of Ophthalmology and Visual Sciences, University of Maryland School of Medicine, Baltimore, Maryland.

出版信息

Ophthalmol Retina. 2021 Jan;5(1):71-77. doi: 10.1016/j.oret.2020.06.016. Epub 2020 Jun 17.

Abstract

PURPOSE

Retinal screening examinations can prevent vision loss resulting from diabetes but are costly and highly underused. We hypothesized that artificial intelligence-assisted nonmydriatic point-of-care screening administered during primary care visits would increase the adherence to recommendations for follow-up eye care in patients with diabetes.

DESIGN

Prospective cohort study.

PARTICIPANTS

Adults 18 years of age or older with a clinical diagnosis of diabetes being cared for in a metropolitan primary care practice for low-income patients.

METHODS

All participants underwent nonmydriatic fundus photography followed by automated retinal image analysis with human supervision. Patients with positive or inconclusive screening results were referred for comprehensive ophthalmic evaluation. Adherence to referral recommendations was recorded and compared with the historical adherence rate from the same clinic.

MAIN OUTCOME MEASURE

Rate of adherence to eye screening recommendations.

RESULTS

By automated screening, 8.3% of the 180 study participants had referable diabetic eye disease, 13.3% had vision-threatening disease, and 29.4% showed inconclusive results. The remaining 48.9% showed negative screening results, confirmed by human overread, and were not referred for follow-up ophthalmic evaluation. Overall, the automated platform showed a sensitivity of 100% (confidence interval, 92.3%-100%) in detecting an abnormal screening results, whereas its specificity was 65.7% (confidence interval, 57.0%-73.7%). Among patients referred for follow-up ophthalmic evaluation, the adherence rate was 55.4% at 1 year compared with the historical adherence rate of 18.7% (P < 0.0001, Fisher exact test).

CONCLUSIONS

Implementation of an automated diabetic retinopathy screening system in a primary care clinic serving a low-income metropolitan patient population improved adherence to follow-up eye care recommendations while reducing referrals for patients with low-risk features.

摘要

目的

视网膜筛查检查可以预防糖尿病导致的视力丧失,但费用高昂且未得到充分利用。我们假设,在初级保健就诊期间进行人工智能辅助的免散瞳即时护理点筛查,将增加糖尿病患者遵循后续眼科护理建议的依从性。

设计

前瞻性队列研究。

参与者

在为低收入患者服务的大都市初级保健实践中,年龄在 18 岁或以上且临床诊断为糖尿病的成年人。

方法

所有参与者均接受免散瞳眼底照相检查,然后进行自动化视网膜图像分析,并由人工进行监督。对筛查结果阳性或不确定的患者进行全面眼科评估。记录对转诊建议的依从性,并与同一诊所的历史依从率进行比较。

主要观察指标

对眼部筛查建议的依从率。

结果

通过自动化筛查,180 名研究参与者中有 8.3%患有可转诊的糖尿病眼病,13.3%患有威胁视力的疾病,29.4%的结果不确定。其余 48.9%的筛查结果为阴性,经人工复查确认,未转诊进行后续眼科评估。总的来说,自动化平台在检测异常筛查结果方面的敏感性为 100%(置信区间,92.3%-100%),特异性为 65.7%(置信区间,57.0%-73.7%)。在转诊进行后续眼科评估的患者中,1 年时的依从率为 55.4%,而历史依从率为 18.7%(P<0.0001,Fisher 确切检验)。

结论

在为低收入大都市患者人群服务的初级保健诊所中实施自动化糖尿病视网膜病变筛查系统,在减少低风险特征患者转诊的同时,提高了对后续眼科护理建议的依从性。

相似文献

1
Diabetic Retinopathy Screening with Automated Retinal Image Analysis in a Primary Care Setting Improves Adherence to Ophthalmic Care.
Ophthalmol Retina. 2021 Jan;5(1):71-77. doi: 10.1016/j.oret.2020.06.016. Epub 2020 Jun 17.
5
Prospective evaluation of an artificial intelligence-enabled algorithm for automated diabetic retinopathy screening of 30 000 patients.
Br J Ophthalmol. 2021 May;105(5):723-728. doi: 10.1136/bjophthalmol-2020-316594. Epub 2020 Jun 30.
6
Telemedical Diabetic Retinopathy Screening in a Primary Care Setting: Quality of Retinal Photographs and Accuracy of Automated Image Analysis.
Ophthalmic Epidemiol. 2022 Jun;29(3):286-295. doi: 10.1080/09286586.2021.1939886. Epub 2021 Jun 20.
8
Diabetic retinopathy screening in urban primary care setting with a handheld smartphone-based retinal camera.
Acta Diabetol. 2020 Dec;57(12):1493-1499. doi: 10.1007/s00592-020-01585-7. Epub 2020 Aug 4.
9
Facilitating diabetic retinopathy screening using automated retinal image analysis in underresourced settings.
Diabet Med. 2021 Sep;38(9):e14582. doi: 10.1111/dme.14582. Epub 2021 Apr 17.

引用本文的文献

1
AI and Primary Care: Scoping Review.
J Med Internet Res. 2025 Aug 15;27:e65950. doi: 10.2196/65950.
6
AI Diabetic Retinopathy Screening in a Primary Care Setting in Rural Maine.
J Gen Intern Med. 2025 Jan 6. doi: 10.1007/s11606-024-09319-z.
7
Cost-effectiveness of AI for pediatric diabetic eye exams from a health system perspective.
NPJ Digit Med. 2025 Jan 2;8(1):3. doi: 10.1038/s41746-024-01382-4.
8
Availability of Evidence for Predictive Machine Learning Algorithms in Primary Care: A Systematic Review.
JAMA Netw Open. 2024 Sep 3;7(9):e2432990. doi: 10.1001/jamanetworkopen.2024.32990.
10
Transparency in Artificial Intelligence Reporting in Ophthalmology-A Scoping Review.
Ophthalmol Sci. 2024 Jan 18;4(4):100471. doi: 10.1016/j.xops.2024.100471. eCollection 2024 Jul-Aug.

本文引用的文献

2
Diabetic Retinopathy Preferred Practice Pattern®.
Ophthalmology. 2020 Jan;127(1):P66-P145. doi: 10.1016/j.ophtha.2019.09.025. Epub 2019 Sep 25.
3
Emerging Insights and Interventions for Diabetic Retinopathy.
Curr Diab Rep. 2019 Sep 10;19(10):100. doi: 10.1007/s11892-019-1218-2.
5
Deep Learning-Based Algorithms in Screening of Diabetic Retinopathy: A Systematic Review of Diagnostic Performance.
Ophthalmol Retina. 2019 Apr;3(4):294-304. doi: 10.1016/j.oret.2018.10.014. Epub 2018 Nov 3.
6
10. Microvascular Complications and Foot Care: .
Diabetes Care. 2018 Jan;41(Suppl 1):S105-S118. doi: 10.2337/dc18-S010.
7
A tool for automated diabetic retinopathy pre-screening based on retinal image computer analysis.
Comput Biol Med. 2017 Sep 1;88:100-109. doi: 10.1016/j.compbiomed.2017.07.007. Epub 2017 Jul 8.
8
Telemedicine for Diabetic Retinopathy Screening.
JAMA Ophthalmol. 2017 Jul 1;135(7):722-723. doi: 10.1001/jamaophthalmol.2017.1257.
9
Evaluation of Diabetic Retinal Screening and Factors for Ophthalmology Referral in a Telemedicine Network.
JAMA Ophthalmol. 2017 Jul 1;135(7):706-714. doi: 10.1001/jamaophthalmol.2017.1150.
10
Ophthalmic Screening Patterns Among Youths With Diabetes Enrolled in a Large US Managed Care Network.
JAMA Ophthalmol. 2017 May 1;135(5):432-438. doi: 10.1001/jamaophthalmol.2017.0089.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验