Dai Yao, Lawrence Theodore S, Xu Liang
Department of Radiation Oncology and Comprehensive Cancer Center, University of Michigan Medical School Ann Arbor, MI 48109, USA.
Am J Transl Res. 2009;1(1):1-15. Epub 2009 Jan 1.
Chemo- or radioresistance markedly impairs the efficacy of cancer therapy and involves anti-apoptotic signal transduction pathways that prevent cell death. In resistant cancer cells, both inhibitors of apoptosis proteins (IAPs) and nuclear factor-kappa B (NF-kappaB) play a pivotal role in preventing apoptosis triggered by a variety of stresses, facilitating them as potential targets in cancer treatment. Furthermore, mounting evidences have established the crosstalks between IAPs (eg. XIAP, cIAP-1, cIAP-2) and proteins involved in NF-kappaB signaling (eg. TRAF2, RIP1, TAB1). Second mitochondria-derived activator of caspases (Smac) is a mitochondrial protein that released into cytoplasm upon apoptotic stimuli. As Smac functions as an endogenous IAP inhibitor, small molecule Smac-mimetics are believed to neutralize IAPs function that results in liberating caspase activity and promoting apoptosis. Moreover, recent studies show that Smac-mimetics may kill cancer cells in a different manner, which involves inducing ubiquitination of cIAPs, regulating NF-kappaB signaling and facilitating TNFalpha-triggered, caspase-8-mediated apoptosis in a certain cancer cell types. In other cancer cells that are resistant to TNFalpha or chemo/radiotherapy, Smac-mimetic IAP-inhibitors can enhance ionizing radiation or tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-induced apoptosis, indicating the potential role of Smac-mimetics in overcoming acquired therapy-resistance. Such findings provide important impetus for utilizing IAP-inhibitors as novel adjuvant therapy for the TNFalpha-resistant, NF-kappaB constitutively active cancers that account for the majority of patients who are refractory to current therapeutic approaches.
化疗耐药或放疗耐药显著损害癌症治疗效果,并涉及阻止细胞死亡的抗凋亡信号转导通路。在耐药癌细胞中,凋亡抑制蛋白(IAPs)和核因子-κB(NF-κB)在阻止多种应激触发的凋亡过程中均发挥关键作用,使其成为癌症治疗中的潜在靶点。此外,越来越多的证据表明IAPs(如X连锁凋亡抑制蛋白、细胞凋亡抑制蛋白-1、细胞凋亡抑制蛋白-2)与参与NF-κB信号传导的蛋白(如肿瘤坏死因子受体相关因子2、受体相互作用蛋白1、TAK1结合蛋白1)之间存在相互作用。第二线粒体衍生的半胱天冬酶激活剂(Smac)是一种线粒体蛋白,在凋亡刺激时释放到细胞质中。由于Smac作为内源性IAP抑制剂发挥作用,小分子Smac模拟物被认为可中和IAPs的功能,从而释放半胱天冬酶活性并促进细胞凋亡。此外,最近的研究表明,Smac模拟物可能以不同方式杀死癌细胞,这涉及诱导细胞凋亡抑制蛋白的泛素化、调节NF-κB信号传导以及在某些癌细胞类型中促进肿瘤坏死因子α触发的、半胱天冬酶8介导的细胞凋亡。在对肿瘤坏死因子α或化疗/放疗耐药的其他癌细胞中,Smac模拟物IAP抑制剂可增强电离辐射或肿瘤坏死因子相关凋亡诱导配体(TRAIL)诱导的细胞凋亡,表明Smac模拟物在克服获得性治疗耐药方面的潜在作用。这些发现为将IAP抑制剂用作新型辅助治疗提供了重要动力,用于治疗对当前治疗方法难治的大多数患者所患的对肿瘤坏死因子α耐药、NF-κB持续激活的癌症。