Institut für Chemie, Humboldt-Universität zu Berlin, Unter den Linden 6, 10099-D, Germany.
J Chem Phys. 2009 Dec 7;131(21):214101. doi: 10.1063/1.3267858.
A new formulation of resolution of identity approximation for the Coulomb term is presented, which uses atom-centered basis and auxiliary basis functions and treats molecular and periodic systems of any dimensionality on an equal footing. It relies on the decomposition of an auxiliary charge density into charged and chargeless components. Applying the Coulomb metric under periodic boundary conditions constrains the explicit form of the charged part. The chargeless component is determined variationally and converged Coulomb lattice sums needed for its determination are obtained using chargeless linear combinations of auxiliary basis functions. The lattice sums are partitioned in near- and far-field portions which are treated through an analytical integration scheme employing two- and three-center electron repulsion integrals and multipole expansions, respectively, operating exclusively in real space. Our preliminary implementation within the TURBOMOLE program package demonstrates consistent accuracy of the method across molecular and periodic systems. Using common auxiliary basis sets the errors of the approximation are small, in average about 20 muhartree per atom, for both molecular and periodic systems.
提出了一种新的库仑项分辨近似形式,它使用原子中心基函数和辅助基函数,并平等地处理任何维度的分子和周期性体系。它依赖于辅助电荷密度分解为带电和不带电成分。在周期性边界条件下应用库仑度规限制了带电部分的显式形式。不带电部分通过变分确定,并且使用辅助基函数的不带电线性组合来获得确定其所需的收敛库仑格子和。格子和被分为近场和远场部分,通过使用二中心和三中心电子排斥积分以及多极展开的分析积分方案分别在实空间中进行处理。我们在 TURBOMOLE 程序包中的初步实现表明,该方法在分子和周期性体系中具有一致的准确性。使用常见的辅助基集,对于分子和周期性体系,该近似的误差都很小,平均每个原子约为 20 毫哈特利。