Department of Theoretical and Computational Molecular Science, Institute for Molecular Science, Okazaki 444-8585, Japan.
J Chem Phys. 2010 Nov 14;133(18):184103. doi: 10.1063/1.3503153.
Efficient periodic boundary condition (PBC) calculations by the second-order Møller-Plesset perturbation (MP2) method based on crystal orbital formalism are developed by introducing the resolution-of-identity (RI) approximation of four-center two-electron repulsion integrals (ERIs). The formulation and implementation of the PBC RI-MP2 method are presented. In this method, the mixed auxiliary basis functions of the combination of Poisson and Gaussian type functions are used to circumvent the slow convergence of the lattice sum of the long-range ERIs. Test calculations of one-dimensional periodic trans-polyacetylene show that the PBC RI-MP2 method greatly reduces the computational times as well as memory and disk sizes, without the loss of accuracy, compared to the conventional PBC MP2 method.
基于晶体轨道理论,通过引入四中心双电子排斥积分(ERI)的离域积分(RI)近似,开发了一种基于二阶Møller-Plesset 微扰(MP2)方法的高效周期性边界条件(PBC)计算。本文提出了 PBC RI-MP2 方法的公式和实现。在该方法中,使用泊松和高斯型函数组合的混合辅助基函数来避免长程 ERI 的晶格和的缓慢收敛。对一维周期性反式聚乙炔的测试计算表明,与传统的 PBC MP2 方法相比,PBC RI-MP2 方法大大减少了计算时间以及内存和磁盘空间,而不会降低准确性。