Yamamoto Akihiko, Anholt Robert R H, MacKay Trudy F C
Department of Biology, North Carolina State University, Raleigh, NC, USA.
Genet Res (Camb). 2009 Dec;91(6):373-82. doi: 10.1017/S0016672309990279. Epub 2009 Dec 8.
Epistasis is an important feature of the genetic architecture of quantitative traits. Previously, we showed that startle-induced locomotor behaviour of Drosophila melanogaster, a critical survival trait, is highly polygenic and exhibits epistasis. Here, we characterize epistatic interactions among homozygous P-element mutations affecting startle-induced locomotion in the Canton-S isogenic background and in 21 wild-derived inbred genetic backgrounds. We find pervasive epistasis for pairwise combinations of homozygous P-element insertional mutations as well as for mutations in wild-derived backgrounds. In all cases, the direction of the epistatic effects is to suppress the mutant phenotypes. The magnitude of the epistatic interactions in wild-derived backgrounds is highly correlated with the magnitude of the main effects of mutations, leading to phenotypic robustness of the startle response in the face of deleterious mutations. There is variation in the magnitude of epistasis among the wild-derived genetic backgrounds, indicating evolutionary potential for enhancing or suppressing effects of single mutations. These results provide a partial glimpse of the complex genetic network underlying the genetic architecture of startle behaviour and provide empirical support for the hypothesis that suppressing epistasis is the mechanism underlying genetic canalization of traits under strong stabilizing selection. Widespread suppressing epistasis will lead to underestimates of the main effects of quantitative trait loci (QTLs) in mapping experiments when not explicitly accounted for. In addition, suppressing epistasis could lead to underestimates of mutational variation for quantitative traits and overestimates of the strength of stabilizing selection, which has implications for maintenance of variation of complex traits by mutation-selection balance.
上位性是数量性状遗传结构的一个重要特征。此前,我们发现黑腹果蝇的惊吓诱导运动行为(一种关键的生存性状)具有高度多基因性并表现出上位性。在此,我们描述了在Canton - S同基因背景以及21种野生衍生近交遗传背景下,影响惊吓诱导运动的纯合P因子突变之间的上位性相互作用。我们发现纯合P因子插入突变的成对组合以及野生衍生背景中的突变都存在普遍的上位性。在所有情况下,上位性效应的方向都是抑制突变表型。野生衍生背景中上位性相互作用的大小与突变主效应的大小高度相关,从而在面对有害突变时导致惊吓反应的表型稳健性。野生衍生遗传背景之间上位性的大小存在差异,表明存在增强或抑制单个突变效应的进化潜力。这些结果部分揭示了惊吓行为遗传结构背后复杂的遗传网络,并为以下假说提供了实证支持:抑制上位性是强稳定选择下性状遗传稳态的潜在机制。当未明确考虑时,广泛存在的抑制上位性会导致在定位实验中低估数量性状基因座(QTL)的主效应。此外,抑制上位性可能导致低估数量性状的突变变异,并高估稳定选择的强度,这对通过突变 - 选择平衡维持复杂性状的变异具有影响。