Department of Genetics, North Carolina State University, Raleigh, NC 27695, USA.
Proc Natl Acad Sci U S A. 2012 Sep 25;109(39):15553-9. doi: 10.1073/pnas.1213423109. Epub 2012 Sep 4.
Epistasis-nonlinear genetic interactions between polymorphic loci-is the genetic basis of canalization and speciation, and epistatic interactions can be used to infer genetic networks affecting quantitative traits. However, the role that epistasis plays in the genetic architecture of quantitative traits is controversial. Here, we compared the genetic architecture of three Drosophila life history traits in the sequenced inbred lines of the Drosophila melanogaster Genetic Reference Panel (DGRP) and a large outbred, advanced intercross population derived from 40 DGRP lines (Flyland). We assessed allele frequency changes between pools of individuals at the extremes of the distribution for each trait in the Flyland population by deep DNA sequencing. The genetic architecture of all traits was highly polygenic in both analyses. Surprisingly, none of the SNPs associated with the traits in Flyland replicated in the DGRP and vice versa. However, the majority of these SNPs participated in at least one epistatic interaction in the DGRP. Despite apparent additive effects at largely distinct loci in the two populations, the epistatic interactions perturbed common, biologically plausible, and highly connected genetic networks. Our analysis underscores the importance of epistasis as a principal factor that determines variation for quantitative traits and provides a means to uncover genetic networks affecting these traits. Knowledge of epistatic networks will contribute to our understanding of the genetic basis of evolutionarily and clinically important traits and enhance predictive ability at an individualized level in medicine and agriculture.
上位性-多态性基因座之间的非线性遗传相互作用-是 canalization 和物种形成的遗传基础,上位性相互作用可用于推断影响数量性状的遗传网络。然而,上位性在数量性状遗传结构中的作用仍存在争议。在这里,我们比较了三个黑腹果蝇生活史性状的遗传结构,这些性状分别来自于经过测序的近交系果蝇遗传参考面板(DGRP)和一个由 40 个 DGRP 系衍生的大型杂交、高级近交群体(Flyland)。我们通过深度 DNA 测序评估了 Flyland 群体中每个性状分布极端个体群体之间的等位基因频率变化。在这两种分析中,所有性状的遗传结构均高度多基因。令人惊讶的是,在 Flyland 中与性状相关的 SNPs 没有一个在 DGRP 中复制,反之亦然。然而,这些 SNP 中的大多数都参与了 DGRP 中的至少一个上位性相互作用。尽管在两个群体中存在明显的加性效应,但这些上位性相互作用扰乱了常见的、生物学上合理的、高度连接的遗传网络。我们的分析强调了上位性作为决定数量性状变异的主要因素的重要性,并提供了一种揭示影响这些性状的遗传网络的方法。对上位性网络的了解将有助于我们理解进化和临床重要性状的遗传基础,并增强医学和农业个体化水平的预测能力。